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Abstract 

Background Accurate predictions of animal occurrence in time and space are crucial for informing and implement‑
ing science‑based management strategies for threatened species.

Methods We compiled known, available satellite tracking data for pygmy blue whales in the Eastern Indian Ocean 
(n = 38), applied movement models to define low (foraging and reproduction) and high (migratory) move persistence 
underlying location estimates and matched these with environmental data. We then used machine learning models 
to identify the relationship between whale occurrence and environment, and predict foraging and migration habitat 
suitability in Australia and Southeast Asia.

Results Our model predictions were validated by producing spatially varying accuracy metrics. We identi‑
fied the shelf off the Bonney Coast, Great Australian Bight, and southern Western Australia as well as the slope 
off the Western Australian coast as suitable habitat for migration, with predicted foraging/reproduction suitable 
habitat in Southeast Asia region occurring on slope and in deep ocean waters. Suitable foraging habitat occurred 
primarily on slope and shelf break throughout most of Australia, with use of the continental shelf also occurring, 
predominanly in South West and Southern Australia. Depth of the water column (bathymetry) was consistently a top 
predictor of suitable habitat for most regions, however, dynamic environmental variables (sea surface temperature, 
surface height anomaly) influenced the probability of whale occurrence.

Conclusions Our results indicate suitable habitat is related to dynamic, localised oceanic processes that may 
occur at fine temporal scales or seasonally. An increase in the sample size of tagged whales is required to move 
towards developing more dynamic distribution models at seasonal and monthly temporal scales. Our validation 
metrics also indicated areas where further data collection is needed to improve model accuracy. This is of particular 
importance for pygmy blue whale management, since threats (e.g., shipping, underwater noise and artificial struc‑
tures) from the offshore energy and shipping industries will persist or may increase with the onset of an offshore 
renewable energy sector in Australia.
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Introduction
Accurate data on the occurrence of threatened species in 
time and space is crucial for managing potential interac-
tions with anthropogenic activities. For many wide-rang-
ing migratory species, satellite telemetry represents one 
of the most effective methods to collect data to under-
stand species distributions and locations of biological 
importance (e.g., kernel utilisation distribution, gridded 
time in area). However, satellite tracking data can be lim-
ited in its ability to document potentially important areas 
across the entire range of animals. This is due to a com-
bination of low sample size of tagged individuals and/or 
relatively low duration of the deployment of satellite tags 
due to limitations in battery life, early tag shedding, and/
or sensor fouling/failure. As such, the resulting spatial 
outputs may not be representative of all areas used by the 
focal species [1–3].

The use of movement data collected by satellite teleme-
try to predict relative suitable habitat using species distri-
bution models can overcome some of these constraints. 
Species distribution models identify the statistical rela-
tionship between species occurrence and environmental 
data to derive relative habitat suitability maps [4]. These 
models were developed for species observation data (e.g., 
from structured and opportunistic surveys), but for many 
marine migratory species, observational data is often lim-
ited in space and time, and often only represents a small 
proportion of biologically important activities exhibited 
by individuals. In contrast, satellite telemetry enables 
the semi-continuous collection of data, not restricted by 
observational limitations, and the ability to estimate spe-
cific behaviours (e.g., migratory, area-restricted move-
ments). In recent times, this method has been widely 
applied in the marine environment to define distribu-
tions of rare or under-sampled species [5], assess range 
shifts from climate change [6, 7] and for supporting and 
assessing the delineation of protected areas [8]. The use 
of satellite tracking data in species distribution models 
has been limited historically because the data represents 
presence-only and is autocorrelated requiring application 
of complex techniques that can handle these datasets [9]. 
However, the definition of suitable habitat from satellite 
telemetry data allows for further inferences of species 
behaviour (e.g., foraging, migration, resting) in relation to 
the predicted relative habitat preference, thus providing 
additional decision support for managing threatened and 
poorly understood species in habitats of interest [4, 10].

The Eastern Indian Ocean stock of pygmy blue whales 
(Balaenoptera musculus brevicauda) is one of two recog-
nised blue whale (Balaenoptera musculus) subspecies in 
the Southern Hemisphere (henceforth simply referred to 
as ‘pygmy blue whale’). The pygmy blue whale has cur-
rently not been evaluated under the International Union 

for Conservation of Nature (IUCN) Red List due to the 
paucity of data on distribution and population trends 
[11]. The Australian populations of blue whales have, 
however, been evaluated under the Australian Environ-
ment Protection and Biodiversity Conservation (EPBC) 
Act as ‘Endangered’. The pygmy blue whale migrates from 
austral summer feeding areas in the Subtropical Conver-
gence Zone (40° S to 55° S) and in south Australian waters 
towards the equatorial region in the Banda Sea [12]. Rec-
ognised aggregations for feeding (predominantly on krill) 
along their migratory route occur in the Perth Canyon 
in the southwest of Western Australia (WA), and the 
Great Southern Australian Coastal Upwelling System 
in southern Australia [12–15]. Their migration route 
passes through areas subject to fisheries, offshore oil and 
gas activities, shipping routes and areas proposed for 
offshore renewable energy developments [12, 16–18], 
exposing them to a wide range of threats.

In the Eastern North Pacific, where blue whales are 
at risk of ship strike, satellite tracking data (combined 
with observation data) was used to develop a dynamic 
predictive model of blue whale distribution off Califor-
nia (known as WhaleWatch). Seasonal predictions of 
the probability of occurrence of blue whales from this 
model allow marine user groups such as the shipping, 
offshore energy and fishing industries to consider spa-
tial and temporal adjustments to their activities to limit 
interactions with this threatened species [10]. Given this 
success, we set out to try a similar approach in Australia, 
where mining for oil and gas (offshore) and iron ore (on 
land) has resulted in the development of large ports and 
an increase in shipping and vessel movement, exposing 
whales to threats such as noise interference, vessel dis-
turbance and collisions [17]. In order to accurately assess 
impacts and develop mitigation strategies, an under-
standing of pygmy blue whale habitat use is needed. In 
particular, a management strategy that takes into consid-
eration the dynamic nature of the drivers of pygmy blue 
whale foraging and that these animals appear to feed dur-
ing migration [12, 19, 20].

Here, we combine existing satellite tracking data from 
across most of the known range of this subspecies with 
targeted new deployments of satellite tags to increase 
the sample size of tracked whales. We use this dataset 
to model the relationship between whale presence and 
remotely sensed environmental variables to identify their 
relative probability of occurrence and define relative hab-
itat suitability across their distribution. In addition, we 
use movement models to determine where pygmy blue 
whales displayed low move persistence indicating forag-
ing, resting and/or reproductive behaviours, as opposed 
to migratory movements, to develop separate habitat 
suitability models for foraging, migration, and foraging/
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reproduction areas. We also attempt to predict rela-
tive habitat suitability into areas of interest, sometimes 
beyond the geographic location of training data. How-
ever, to assess uncertainty in the predictions and to aid 
their applicability to management, we implement evalu-
ation metrics such as spatial Kappa and spatial AUC [21] 
to map the both accuracy and uncertainty of our spatial 
predictions. Although our sample size is still relatively 
low compared to other predictive modelling approaches 
like WhaleWatch [10] (n = 38 vs 104), we develop a work-
flow where additional data can be incorporated in the 
future, as the dataset grows.

Material and methods
Satellite tracking data
Satellite tracking data for pygmy blue whales tagged along 
the western and southern Australian coasts were com-
piled for the analyses. This included existing (n = 9 from 
Perth Canyon, WA, [12]; n = 13 from Bonney Coast, 
[14]; n = 6 from Ningaloo and n = 4 from Perth Canyon, 
[18]) and new data (unpublished) from tag deployments 
in the Perth Canyon, Western Australia in 2022 (n = 6) 
(Table S1, Figure S1). Please see the cited papers for tag 
deployment methods. More recent tag deployments 
were conducted using Wildlife Computers LIMPET (Low 
Impact Minimally Percutaneous Electronic Transmitters, 
type: SPLASH10-F-333) containing GPS receivers, thus 
providing both Argos and GPS location data (Table S1). 
Older deployments from 2009, 2011 and 2015 [12, 14] 
employed implantable Wildlife Computers Satellite Posi-
tion Only Tags (SPOT), providing Argos location data 
only (Table  S1). Argos locations are assigned a location 
class (LC) by CLS Argos based on the error associated 
with the location estimate. The spatial error (95th error 
percentiles) for these location classes (3, 2, 1, 0, A, B, Z) 
have been independently assessed as 1.5, 3.3, 7.6, 36, 60, 
163 and 220 km respectively for unfiltered data [22, 23]. 
For GPS locations, location fixes obtained from six or 
more satellites are associated with much smaller errors of 
around 10 s of meters [24].

A state-space model (SSM) [25, 26] was applied to the 
raw Argos and GPS location data combined using the R 
package foieGras [27] (now named aniMotum; [28]) to 
account for location error and autocorrelation between 
locations along the track. To ensure the model did not 

overfit, we selected the time step for each predicted track 
to be in-line with the average number of actual loca-
tions (both Argos and GPS) received by the satellite tag 
per day. Tracks with large gaps (> 5 days) were split and 
each portion of data analysed separately. All models were 
checked for convergence.

A move persistence model was then implemented on 
SSM tracks, so that a move persistence value (g) was cal-
culated for each location [27, 29]. Move persistence (g) 
is an index ranging between 0 (decrease in speed and 
directionality) and 1 (increase in speed and directional-
ity) [29]. Relatively low move persistence is indicative of 
‘area restricted search’ behaviour such as foraging, but 
can also indicate resting and reproduction, whereas rela-
tively high move persistence generally represents behav-
iours such as transiting and migration. Based on Thums 
[18], locations with move persistence (g) < 0.8 were classi-
fied as behaviours linked to foraging or reproduction and 
locations with move persistence (g) ≥ 0.8 were classified 
as migration (Fig. 1), with separate habitat models devel-
oped for each behaviour. We further split low move per-
sistence locations as those occurring within Australian 
waters, which we label as foraging (although whales may 
also be resting while in these areas), and those occurring 
in the Southeast Asia region which we label as “foraging/
reproduction” (although whales may also be resting). We 
did this based on the view that low move persistence in 
the latter region is thought (though not confirmed) to be 
related to reproduction (calving/breeding) but foraging 
likely also occurs [30], whereas low move persistence in 
Australia is thought to be related to foraging predomi-
nantly [12, 31].

Environmental variables
Environmental variables most commonly used to model 
blue whale movement and habitat [10, 14, 18, 30, 33–35], 
and other marine megafauna [36] were considered as 
covariates to model habitat suitability for pygmy blue 
whales. However, not all environmental variables were 
available with appropriate spatial and temporal resolu-
tion for the whole pygmy blue whale distribution. Thus, 
we selected only those that had spatial resolution < 20 km 
(Table  1) to match grid cell sizes suitable for modelling 
satellite tracking data to define distribution and identify 
important areas within regional extents [1]. Bathymetry 

Fig. 1 State‑space modelled (SSM) satellite tracks of 38 pygmy blue whales and the boundaries of the four regions for which habitat modelling 
was undertaken. a SSM tracks with each location classified as low (g < 0.8, blue; indicative of foraging and/or reproduction) or high (g > 0.8, 
yellow; indicative of migration) move persistence (g) and b SSM satellite tracks with locations colour coded by month of the year, overlayed 
with geomorphologic features [32]. Note that the North West and South West data were combined to model high move persistence (migration) 
in Western Australia

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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data were obtained from the General Bathymetry Chart 
of the Oceans Gebco15 database in a 30 arc-second reso-
lution grid (http:// www. gebco. net). Rugosity was calcu-
lated from the bathymetry data in ArcGis 10.8 using the 
Benthic Terrain Modeler tool as a measure of benthic 
habitat heterogeneity. Distance to closest canyon was 
calculated from the edge of each canyon feature using a 
layer of mapped  geomorphic features  of the Australian 
margin [32]. Remote-sensed data used were 5-day and 
8-day means and monthly standard deviations rather 
than daily values to reduce the occurrence of large areas 
of no data due to cloud cover, which would result in miss-
ing data across the model domain. We included measures 
of chlorophyll-a taken 14  days prior to the whale being 
present at a location to account for the temporal lag that 
exists between primary production (chlorophyll-a) and 
zooplankton (krill) abundance [37], although time lags 
from primary production vary across ecosystems and 
season and can range from a few days to months [38]. 
We used sea surface height anomaly, which is a measure 
of the difference between long-term average sea-level 
for a regional ocean and the measure observed by a sat-
ellite at a point in time, as indicative of the presence of 
upwelling and downwelling of water that might affect 
productivity and/or be related to the presence of eddies 
that can  aggregate zooplankton [39]. We also included 
the predictor Month in our models to account for the 
seasonality of the movement behaviour of pygmy blue 
whales (Table  1). We used the layers of geomorphology 

of the Australian margin and adjacent seafloor [32] and 
[40] to overlay predicted suitable habitat over shelf, slope, 
and ocean basin bathymetric features within Australian 
waters and the Southeast Asia region, respectively, and 
calculated the percentage of suitable habitat within each 
bathymetric feature.

We assessed correlations between environmental vari-
ables prior to the analysis by performing a pairwise Pear-
son’s test to remove highly collinear variables (< − 0.6 
or > 0.6; [41]) keeping the variable that had higher impor-
tance score in preliminary testing. Although correlations 
between variables do not affect the modelling framework 
gradient boosted models [42] used here (see below), they 
can influence variable importance scores and partial 
dependence plots [43].

Habitat model
We developed a use-availability (or case control) design 
to estimate relative probability of occurrence, and thus 
relative habitat suitability, using presence-only species 
occurrence data satellite tracking data [2, 3, 44]. We 
modelled relative habitat suitability separately for forag-
ing (low move persistence in Australian waters), forag-
ing/reproduction (low move persistence in Southeast 
Asia), and migratory (high move persistence in Australia) 
movement behaviours, because pygmy blue whale habi-
tat and environmental requirements likely differ during 
these behavioural modes [45]. For the foraging relative 
habitat suitability models we split the Australian pygmy 

Table 1 Environmental variables used as covariates to model pygmy blue whale habitat suitability

36

Shaded cells indicate which variables were considered in the model for each behaviour and cells without shading indicate variables not considered for each behaviour 
model. R = Foraging/Reproduction (low move persistence in Southeast Asia), F = Foraging (low move persistence in Australian waters), M = Migration (high move 
persistence)

http://www.gebco.net
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blue whale range into three regions to account for the 
different environmental setting in each area [18]: North 
West Western Australia; between 11.5° S and 28.8° S 
from Ashmore Reef to Shark Bay, South West Western 
Australia; between 23.6° S and 32° S, from Cape Natural-
iste to Shark Bay, and Southern Australia; as the area of 
the coast with latitudes greater than 32° S and longitude 
greater than 116° E from Cape Naturaliste to Tasmania 
(Fig.  1a). For migration models we used the Australian 
section of the tracks (42° S to 11.5° S) only as although 
transit movement exists in Southeast Asia, these were 
short sections of track and were not considered as part 
of their seasonal migratory behaviour. We also split the 
Australian migration data between Southern Australia 
(area of the coast with latitudes greater than 32° S and 
longitude greater than 116° E from Cape Naturaliste to 
Tasmania) and Western Australia (latitudes between 32° 
S and 11.5° S, which combines the South West and North 
West regions), to account for the different environmental 
setting in each area (Fig. 1a).

Gradient boosted models (GBMs) were used to model 
relative probability of occurrence for pygmy blue whales 
using the packages gbm [46] and caret [47] in R [48]. Gra-
dient boosted models sequentially add regression trees to 
an initial weak tree, incrementally correcting predictions 
based on the error learned by earlier trees to minimise 
loss of predictive performance or deviance explained by 
the model [42, 49]. We selected gradient boosted models 
over generalised additive models due to their better per-
formance with larger datasets and due to their ability to 
fit both linear and non-linear responses (i.e., higher val-
ues for accuracy metrics; see Supplementary Material 1). 
This modelling framework has shown generally higher 
explanatory power for modelling blue whale habitat 
models [9], and to describe the relationship between blue 
whale distribution, prey and environment [50, 51]. Addi-
tionally, this method is well-suited to model complex and 
non-linear ecological relationships, and minimises the 
effect of temporal autocorrelation [42]. We modelled the 
response variable presence and pseudo-absence using 
a Bernoulli error distribution, with the locations from 
the SSM tracks representing pygmy blue whale presence 
information. We used the term ‘pseudo-absence’ as it is 
not possible to obtain true absences (e.g., locations where 
the whale could have gone but did not) from tracking 
data [9, 52]. Consequently, pseudo-absences were simu-
lated based on movement metrics extracted from the 
real tracking data (Figure S2). The simulation was done 
for each migration, foraging and foraging/reproduction 
region separately. Hence, simulated locations were given 
the same behaviour classification as the original track.

Each pseudo-track started at the first position of 
the actual track they were based on. From there each 

location was created semi- randomly, that is, they were 
constrained by the duration, and the distribution of step 
lengths and turning angles from the actual track [9, 52]. 
To further reduce the randomness of simulated tracks, 
we oriented each simulated location to the end point 
(defined by the last location estimate received from the 
tag). We also included an ’offset’ parameter that added a 
randomised offset to the turning angle at each step and 
helps prevent the simulated tracks getting stuck inside 
coastal bays. Offset values used were either 180° or 300° 
with simulated tracks inspected visually to determine 
convergence, by ensuring the track did not get stuck 
inside bays or deviate outside model boundaries (Fig. 1a). 
Five simulated tracks were generated for each actual 
track so that the model would have five pseudo-absence 
data points for each presence location. All data points 
(presence and pseudo-absences) were then bounded 
by a regional model extent for each region (Fig.  1a) to 
avoid outliers and erroneous extrapolation of model 
predictions.

Environmental variables (Table  1) were extracted for 
all locations from actual tracks (presence) and simu-
lated tracks (pseudo-absences) matching the date-time 
information (as 5-day or 8-day averages) of locations and 
pseudo-absences (Tables S1, S2). Some environmental 
covariates (chlorophyll-a) were log transformed to stabi-
lise variance and ensure better model fitting.

Model selection and evaluation
Model settings (interaction depth, number of trees, 
minimum node size, shrinkage rate and bagging frac-
tion) were optimised for each model (each behaviour 
and region separately) by performing a grid tuning rou-
tine over every possible combination of the model set-
tings parameters. The final model included the settings 
selected by the lowest relative mean squared error and 
this model was then used to analyse the relationship 
between presence of whales and environment variables. 
We withheld a random sample of 25% of the data (using 
all tracks combined for each region and each behaviour) 
to use for model performance estimates (testing set) 
and used 75% (training set) for each analysis. We used 
the Spearman correlation coefficient to assess accuracy 
of the model by comparing model fit values (predicted 
set) against the testing set, with correlation values > 0.5 
considered to be suitable (with higher values indicating 
stronger correlation and thus better fit). Variable impor-
tance was assessed using the relative influence of reduc-
ing error rate, thus adding predictive accuracy [53].

Predictions from gradient boosted models were used 
to provide a spatial representation of habitat suitabil-
ity based on the relationship between pygmy blue whale 
presence and environmental variables included in the 
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final model. Model predictions ranged from 0 (unsuit-
able) to 1 (suitable habitat) and indicate increasing rela-
tive probability of occurrence, and thus relative habitat 
suitability.

Spatial predictions were made against the environmen-
tal variables included in the final model. For predictions, 
due to limitations on sample size (number of tracks, 
temporal and spatial resolution of data; See Discussion 
for more details) an averaged raster of each environ-
mental variable was created across the temporal extent 
of the whale tracking data in each modelled region and 
for each  behaviour (Fig.  1b, Table  S2). Available raw 
environmental data also had different spatial resolutions 
(Table  1), hence, prior to prediction, average environ-
mental data grids were resampled to create new raster 
grids that matched the coarsest resolution of all variables 
used in each of the final GBM models for each region and 
behaviour.

To identify the cut-off between ‘suitable’ and ‘unsuit-
able’ habitats from model predictions, we applied a 
threshold. Thresholds are often applied to habitat suit-
ability model outputs to transform continuous outputs 
of relative probability of occurrence (from 0 to 1) into 
binary maps (0 = ‘unsuitable’, 1 = ‘suitable’), aiding in 
interpretation and applicability for management [54–
57]. We applied a conservative threshold method to our 
predictions (in comparison to the traditional default of 
0.5 as the cut-off) by estimating the threshold value for 
each model where the predicted prevalence (proportion 
of locations that are occupied) is equal to the observed 
prevalence [56] to identify suitable habitats for pygmy 
blue whales [58].

Spatial prediction validation
Machine learning algorithms such as gradient boosted 
models are powerful tools in spatial mapping and pre-
dictive modelling as these models can fit complex rela-
tionships. However, when these algorithms are used to 
predict distribution in areas outside the spatial extent of 
the training data, it is important to assess the confidence 
in these predictions; i.e., how accurately can the model 
predict occurrence in areas with environmental param-
eters that it may have never “seen” and thus, identify and 
map uncertainty [59, 60]. Providing an assessment of 
accuracy and uncertainty is key to ensure the resulting 
habitat suitability maps are interpreted correctly, particu-
larly for management decisions.

Model accuracy was firstly evaluated by the area 
under the receiver operating curve (AUC; Fourcade 
et  al. 2018) to assess the ability of the model to dis-
criminate between presence and pseudo-absence 
points, and also by Kappa to measure the expected 
agreement between the prediction and actual presence 

data [61, 62]. These metrics provide an accuracy value 
estimated across the entire prediction area and were 
termed ‘global’ model accuracy estimates. The AUC 
values range between 0 and 1, with AUC values consid-
ered excellent for values between 0.9–1, good between 
0.8–0.9, acceptable between 0.7–0.8, moderate between 
0.6–0.7 and poor for AUC values below 0.5 [63]. Kappa 
values range from − 1 to 1 with results considered to 
indicate excellent agreement for values 0.8–1, substan-
tial for values 0.6–0.8, moderate for 0.4–0.6, fair for 
0.2–0.4, slight for 0–0.3 and poor for values ≤ 0 [64]. If 
a model resulted in low global accuracy values, we iden-
tified the explanatory variables with the lowest relative 
influence in the model and those that showed large gaps 
of no data in its spatial distribution and removed them 
from the training dataset. The model was then run 
again without such variables until it reached accept-
able validation metrics (global AUC > 0.6). Conditional 
plots for all variables included in the final models were 
plotted to indicate the relationship between pygmy blue 
whale occurrence and environmental variables.

To spatially validate our model predictions, we cal-
culated spatially varying estimates of accuracy [59]. To 
do this, we used a spatially varying version of Kappa 
and AUC (termed ‘spatial Kappa’ and ‘spatial AUC’) 
(Comber et  al., 2017). Although Kappa is widely used 
because it can account for ‘by chance’ agreement in 
models, it can have some limitations in relation to 
unbalanced sampling and variation in data density 
[62] which may be relevent for tracking data. Thus, 
we also present the spatially varying values of AUC. 
While it does not account for ‘by chance’ agreement 
in the same way as Kappa, this metric is not effected 
by unbalanced sample issues in the same way, and pro-
vides a spatial estimate of model discrimination to aid 
interpretation of the spatial predictions. Spatial Kappa 
and spatial AUC were calculated using a moving win-
dow spatial kernel [21, 65]. We used the variogram 
(range and slope) of the spatial correlation of the data 
(presence and pseudo-absence) to determine the size 
of the moving window spatial kernel [66]. Where vari-
ogram slopes were greater than 0.8, we used a kernel 
size of two times the mean variogram range of spatial 
correlation of the data, and a kernel centroid equal to 
the mean variogram range. When variogram slopes 
were less than 0.8, we used a kernel size of 0.5 of the 
mean variogram range of spatial correlation of the data 
and, a kernel centroid 0.25 times the mean variogram 
range. We plotted spatial Kappa and spatial AUC values 
to assess how predictive accuracy varied spatially and 
used the moderate values of spatial Kappa and spatial 
AUC (> 0.4) as an accuracy threshold above which pre-
diction was considered validated.
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Results
A total of 38 tracks were included in our analysis, with 
19 tags deployed in the Perth Canyon, Western Aus-
tralia, 13 in the Bonney Coast Upwelling, South Aus-
tralia, and six offshore of Ningaloo Reef, Western 
Australia (Table S1). Median track duration was 49 days 
(ranging from 8 to 384 days). For whales tagged off the 
Bonney Coast, tracks had a median duration of 60 days 
(3–384 days). Tags deployed in the Perth Canyon, had 
median duration of 28 days (7–141 days) and for Nin-
galoo Reef this was 52  days (14 to 122  days). For all 
tracks combined, 33% of locations were classified as 
foraging and foraging/reproduction (g < 0.8) and 67% as 
migration (g ≥ 0.8) (Fig. 1a).

Pygmy blue whales were tagged prior to the start of 
or during their northbound migration, and moved 
progressively along the coast from tagging sites at for-
aging areas (Table  S1, Fig.  1) towards their presumed 
breeding/calving area in the Banda Sea region [12] 
(Fig.  1b). Whales tagged in the Bonney Coast started 
moving west towards Cape Leeuwin between April 
and May, although some whales were still displaying 
low move persistence (presumed foraging behaviour) 
within Southern Australia and tags ceased transmis-
sion before they reached the South West of Western 
Australia (Fig. 1b). Once whales reached Cape Leeuwin, 
they shifted their movement to a northward direction. 
Similarly, whales tagged in the Perth Canyon in April 
and May progressively moved north along the coast 
of Western Australia reaching Ningaloo around May–
June (Fig. 1b). After that, tracks sprayed out with some 
whales crossing the abyssal plain and others following 
the shelf break, reaching Indonesia and Banda Sea in 
June–July, where they stayed until September–October 
(Fig. 1b). Tag deployments from only two of the whales 
provided data on the return trip (Figure S3). These 
whales started moving south in September–October 
making their way down the North-West coast of Aus-
tralia, with one of the whales reaching Ningaloo Reef 
before transmissions ceased. The other whale contin-
ued to move south along the Western Australian shelf 
edge, arriving in Southern Australia in November and 
reaching the western edge of the Bonney Upwelling in 
December when the tag stopped transmitting (Figure 
S3).

Collinearity between predictor variables was rela-
tively low (Figure S4) and within the accepted range 
(from − 0.6 to 0.6). Collinearity between distance to the 
200  m bathymetry contour (dist_200), a proxy for the 
shelf break, and distance to canyon (dist_can) (Table 1) 
was the only pair above (0.86) the cut-off. The variable 
dist_200 was also moderately collinear to bathymetry 

(Figure S4); therefore, it was the one selected to be 
excluded from the analysis.

Foraging
North West Western Australia
This subset of the dataset included presence and pseudo-
absence from 17 pygmy blue whales that displayed for-
aging movement behaviour in North West WA (Fig.  1, 
Figures S2, S3). The gradient boosted model had a global 
AUC of 0.85 and global Kappa of 0.36, and a correlation 
between prediction and testing datasets of 0.53, indi-
cating the model had a moderate to good performance. 
The final model included all variables tested for foraging 
(Table 1, Fig. 2a, Supplementary Material 1).

Spatial predictions of whale relative probability of 
occurrence in relation to all environmental variables 
included in the model showed high  habitat suitability 
extending out from the 200 m bathymetry contour (shelf 
break) in the North West of Western Australia (Fig.  3a, 
b). The highest relative suitability occurred from just 
south of Shark Bay to Scott Reef along the shelf break 
(200 m bathymetry contour) and slope, also extending to 
the Exmouth Plateau (Fig.  3a). Suitable foraging habitat 
was identified as a large semi-continuous area from the 
southern extent (28° S) to the northeastern edge of the 
modelled region (11.5° S) (Fig.  3b). Using the geomor-
phology layer [32, 40], suitable habitat occurred almost 
exclusively on slope (91% of suitable habitat), with a 
small amount of suitable habitat in deep ocean floor (7%) 
and minimal suitable habitat on the shelf (2%) (Fig. 3b). 
However, spatial Kappa and spatial AUC values had a 
large variation indicating that the model performed bet-
ter at some areas than others (Fig.  3c, d). Areas along 
the shelf break and slope between the southern extent 
of the modelled region and Rowley Shoals had reason-
able performance (spatial AUC and spatial Kappa > 0.4), 
including areas on the slope off Rowley Shoals, validat-
ing suitable habitat in that area (Fig.  3b). Spatial Kappa 
and spatial AUC scores were low, indicating poor predic-
tive performance, between Rowley Shoals and Scott Reef 
(both < 0.2), at Ashmore Reef and in some areas beyond 
the shelf break (Fig. 3c, d).

South West Western Australia
This subset of the dataset included presence and pseudo-
absence data from 20 pygmy blue whales that displayed 
foraging behaviour in South West Western Australia 
(Fig. 1, Figures S2, S3). The gradient boosted model had 
a global AUC score of 0.86, a global Kappa of 0.50 and 
a correlation between prediction and testing dataset of 
0.59, indicating a reasonable fit. The final model included 
all the variables tested for foraging (Table 1, Fig. 2b, Sup-
plementary Material 1).



Page 9 of 20Ferreira et al. Movement Ecology           (2024) 12:42  

The model output for South West Western Australia 
indicated high relative habitat suitability centred on the 
200 m bathymetry contour covering the outer  shelf  and 
slope from Cape Naturaliste to Geraldton and south of 
Cape Leeuwin (Fig. 4a, b). Suitable foraging habitat was 
identified as a large semi-continuous area from Windy 
Harbour (34.8° S) to Geraldton (Fig.  4b) on the slope 
(79% of suitable habitat) with a smaller amount on the 
shelf (20%) (Fig. 4b). Spatial Kappa and AUC values indi-
cated the predictive performance of the model was rea-
sonable (≥ 0.4) in most of the areas identified with high 
habitat suitability (Fig. 4b). Lower values of spatial Kappa 
and AUC, and thus poor predictive performance (< 0.1), 

were only observed off the section of the coast between 
Cape Leeuwin and Cape Naturaliste (Fig. 4c, d).

Southern Australia
This subset of the dataset included presence and pseudo-
absence data from 11 pygmy blue whales that displayed 
foraging behaviour in southern Australia (Fig.  1, Fig-
ures  S2, S3). The gradient boosted model had a global 
AUC score of 0.95, global Kappa of 0.73 and a correlation 
between prediction and testing dataset of 0.76, indicating 
a very good fit. The final model included eight of the vari-
ables considered and did not include rugosity (Table  1, 
Fig. 2c, Supplementary Material 1).

Fig. 2 Variable importance plots for gradient boosted models using presence/pseudo‑absence of satellite tracked whales displaying low move 
persistence (presumed foraging movement behaviour) in North West WA (a), South West WA (b) and southern Australia (c); displaying low move 
persistence in Southeast Asia (presumed foraging/reproduction area) (d); and during high move persistence (migration movement behaviour) 
off western Australia (e) and Southern Australia (f). Variable importance is presented in relation to their contribution to reducing error rate, 
where the higher the value the more important the variable. Variable names are described in Table 1
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For Southern Australia, the model output indicted 
high relative habitat suitability on the shelf from south-
west Western Australia to Tasmania, with highest relative 
suitability near Bremer Bay, Esperance and in the Bon-
ney Coast (Fig.  5a). Relative habitat suitability was also 
moderate to high off the shelf, particularly off the Bon-
ney Coast (Fig. 5a). Suitable habitat was represented as a 
semi-continuous area encompassing both shelf and slope 
habitats (43% of suitable habitat on the shelf and 48% 
on the slope), but also by smaller dispersed areas in the 
deep ocean at the Subtropical Convergence Zone (9% of 
suitable habitat) (Fig. 5b). Spatial Kappa and AUC values 

indicated the model had good predictive performance 
(> 0.4) over the model extent, except for suitable habitat 
predicted over oceanic areas and parts of the Great Aus-
tralian Bight (Fig. 5b). Spatial AUC and spatial Kappa val-
ues indicated the model performed best off the Bonney 
Coast and offshore of Bremer Bay, Esperance and in the 
eastern Great Australian Bight (Fig. 5c, d).

Foraging/reproduction
Southeast Asia region
This subset of the dataset included presence and pseudo-
absence data from 11 pygmy blue whales that displayed 

Fig. 3 Habitat suitability predicted from the gradient boosted model and spatial accuracy maps for whales displaying foraging behaviour 
in the North West of Western Australia (April to September). Shown are a continuous (0–1) relative habitat suitability, b thresholded suitable habitat 
(pink) and validated suitable habitat (red; suitable habitat restricted to areas with spatial AUC and spatial Kappa > 0.4) overlaid with geomorphologic 
features [32], c spatial distribution of model accuracy (spatial Kappa) and d spatial distribution of model accuracy (spatial AUC). Black dotted 
contours represent the 200 m bathymetry (shelf break), and canyons are outlined in light grey
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low move persistence behaviour (breeding, foraging or 
resting) in the Southeast Asia region (Figure S2). The 
gradient boosted model had a global AUC score of 0.72, 
global Kappa of 0.50, and a correlation between predic-
tion and testing dataset of 0.58, indicating a moderate fit. 
The model included only four of the variables considered 
for the Foraging/Reproduction model (Table  1, Fig.  2d, 
Supplementary Material 1).

In Southeast Asia, higher relative habitat suitability 
and suitable habitat occurred in offshore areas across the 
region that included the Banda, Molluca, Savu and Timor 
seas (Fig.  6a, b) with 49% of habitat overlapping with 

slope, 48% with deep ocean and only 2% with continen-
tal shelves. The model had some performance issues with 
low spatial Kappa (< 0.2) across most of the model extent 
and moderate spatial AUC values (< 0.4). However, spa-
tial Kappa and spatial AUC values were adequate (> 0.4) 
for areas in the Timor Sea, around Indonesia and in the 
western Banda Sea (Fig. 6b–d).

Migration
The subset of the dataset included presence and 
pseudo-absence from 36 pygmy blue whales that 

Fig. 4 Habitat suitability predicted from the gradient boosted model and spatial accuracy maps for whales displaying foraging behaviour 
in the South West of Western Australia (March–June, November). Shown is a continuous (0–1) relative habitat suitability, b thresholded 
suitable habitat (pink) and validated suitable habitat (red, suitable habitat restricted to areas with spatial AUC and spatial Kappa > 0.4) overlaid 
with geomorphologic features [32], c spatial distribution of model accuracy (spatial Kappa) and d spatial distribution of model accuracy (spatial 
AUC). Black dotted contours represent the 200 m bathymetry (indicative of shelf edge), and canyons are indicated in light grey. There is a complete 
overlap of validated (red) and thresholded (pink) suitable habitat north of Cape Naturalist (b) thus pink polygon is not fully visible
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displayed migration movement behaviour (Figure S2, 
Table  S1) including northbound (predominantly) and 
two southbound tracks (Figure S3). The migration 
model for Western Australia included five of the varia-
bles considered (Table 1, Fig. 2e) and had a global AUC 
score of 0.87, and global Kappa of 0.46 and a correla-
tion between prediction and testing dataset of 0.57. The 
migration model for Southern Australia included six 
of the variables (Table 1, Fig. 2f ) and had a global AUC 
of 0.91, global Kappa of 0.83 and correlation of 0.69, 

indicating this model performed better than the model 
for Western Australia.

Western Australia
Areas of high relative habitat suitability for migration 
in western Australia occurred along the shelf break and 
slope between Windy Harbour and Scott Reef, and also 
in deep areas offshore of the Rowley Shoals between the 
latitude of 18° S and 14° S (Fig. 7a, b). In Western Aus-
tralia, large areas of suitable habitat associated with the 
slope (76% of suitable habitat) occurred between Cape 

Fig. 5 Habitat suitability predicted from the gradient boosted model and spatial accuracy maps for whales displaying foraging behaviour 
in southern Australia (January–July, November–December). Shown is a continuous (0–1) relative habitat suitability, b thresholded suitable habitat 
(pink) and validated suitable habitat (red; suitable habitat restricted to areas with spatial AU and spatial Kappa > 0.4) overlaid with geomorphologic 
features [32], c spatial distribution of model accuracy (spatial Kappa) and d spatial distribution of model accuracy (spatial AUC). Black dotted 
contours represent the 200 m bathymetry (shelf break), and canyons are outlined in light grey. There is a large overlap of validated (red) 
and thresholded (pink) suitable habitat on the shelf and slope (b) thus the pink polygon is not fully visible
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Leeuwin and Ningaloo Reef (Fig.  7b), with minor pre-
dicted habitat (5%) over shelf areas between Perth and 
Geraldton and adjacent to the Montebello Islands. 
North of Ningaloo Reef (between  17° S and Ashmore 
Reef ) there was a separation of suitable migration habi-
tat between the deep ocean basin area (19% of suitable 
habitat) and slope habitat (Fig.  7b). The suitable habi-
tats for migration were mostly supported by the spatial 
accuracy metrics (Fig.  7c, d) with excellent agreement 
(spatial Kappa and AUC > 0.8) indicating suitable habi-
tat was validated. However, predicted suitable habitat 
in offshore areas of western Australia and shelf areas of 

northwestern Western Australia had lower accuracy and 
were not validated (Fig. 7b–d).

Southern Australia
Areas of high relative habitat suitability for migration in 
Southern Australia were on the continental shelf from 
Albany to Long Bay, and western Bass Strait (Fig. 8a, b). 
Suitable habitat for migration was represented by mul-
tiple dispersed areas encompassing mostly shelf habitat 
(98% of suitable habitat) off the Bonney Coast, the Great 
Australian Bight and between Albany and Esperance 
(Fig.  8b). Values of spatial Kappa and AUC indicated 

Fig. 6 Habitat suitability predicted from the gradient boosted model and spatial accuracy maps for whales in the Southeast Asia region (May–
October). Shown is a continuous (0–1) relative habitat suitability; b thresholded suitable habitat (pink) and validated suitable habitat (red; suitable 
habitat restricted to areas with spatial AUC and, spatial Kappa > 0.4) overlaid with geomorphologic features [40], c spatial distribution of model 
accuracy (spatial Kappa) and d spatial distribution of model accuracy (spatial AUC). Black dotted contours represent the 200 m bathymetry (shelf 
break). There is a large overlap of validated (red) and thresholded (pink) suitable habitat across the region (b) thus the pink polygon is not fully 
visible
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good model performance (spatial Kappa and spatial 
AUC > 0.4) off Albany and Esperance, the Bonney Coast 
and in coastal areas within the Great Australian Bight 
near Coorabie (Fig. 8b). However, they indicated that the 
model performed poorly in the Bass Strait, some areas 
within the Great Australia Bight and in very shallow 
coastal areas (Fig. 8c, d).

Discussion
We provide the first predictions of Eastern Indian Ocean 
pygmy blue whale relative habitat suitability across 
most of their known range in relation to foraging and 

migratory behaviours, with spatially varying accuracy 
metrics to allow the  certainty of the predictions  to be 
assessed. Depth of the water column, i.e., bathymetry, 
consistently showed high influence on pygmy blue whale 
relative probability of occurrence for all regions and 
behaviours. We identified the shelf break and slope as 
key habitats for pygmy blue whales during foraging and 
migration in southern and western Australia. Foraging 
and migrating whales also used shelf habitat in south-
ern and south-western Australia. Once migrating whales 
reached northern Western Australia and in Southeast 
Asian waters, they displayed almost exclusive use of 

Fig. 7 Habitat suitability predicted from the gradient boosted model and spatial accuracy maps for whales displaying migratory behaviour 
in Western Australia (January to August). Shown is a continuous (0–1) relative habitat suitability, b thresholded suitable habitat (pink) and validated 
suitable habitat (red; suitable habitat restricted to areas with spatial AUC and spatial Kappa > 0.4) overlaid with geomorphologic features [32], c 
spatial distribution of model accuracy (spatial Kappa) and d spatial distribution of model accuracy (spatial AUC). Black dotted contours represent 
the 200 m bathymetry (shelf break), and canyons are outlined in light grey. There is a large overlap of validated (red) and thresholded (pink) suitable 
habitat across the region (b) thus the pink polygon is not fully visible
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slope waters and  deep ocean. However, some dynamic 
variables including sea surface temperature, surface 
height anomaly and chlorophyll-a had a moderate to 
strong influence on probability of occurrence of whales 
suggesting suitable habitats may change with differ-
ent oceanographic conditions and primary production. 
Importantly, the outputs can be considered to account 
for some of the limitations associated with defining the 
extent of area used by a species from satellite tracking 
data, namely that those outputs infer the area used by the 
tracked animals only and are thus limited by sample size 
and tracking duration. While the areas of significance for 

pygmy blue whales in Australia identified previously [12, 
14, 18] are useful for defining the most important areas 
within their distribution, our outputs here delineate the 
relative importance of the habitat areas used for forag-
ing, migration and reproduction throughout the major-
ity of the known pygmy blue whale range. The inclusion 
of robust model validation steps applied here informs 
where our model performed well and thus provides addi-
tional information to advise decision making. For exam-
ple, they could be considered during the delineation of 
Biologically Important Areas (e.g., areas where animals 
display biologically important behaviours that are critical 

Fig. 8 Habitat suitability predicted from the gradient boosted model and spatial accuracy maps for whales displaying migratory behaviour 
in Southern Australia (January to August). Shown is a continuous (0–1) relative habitat suitability, b thresholded suitable habitat (pink) and validated 
suitable habitat (red; suitable habitat restricted to areas with spatial AUC and spatial Kappa > 0.4) overlaid with geomorphologic features [32], c 
spatial distribution of model accuracy (spatial Kappa) and d spatial distribution of model accuracy (spatial AUC). Black dotted contours represent 
the 200 m bathymetry (shelf break), and canyons are outlined in light grey. There is a large overlap of validated (red) and thresholded (pink) suitable 
habitat across the region (b) thus the pink polygon is not fully visible
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for the survival of the species such as foraging, reproduc-
tion, resting) by the Australian Government [31, 67], or 
be used for environmental impact assessment and defin-
ing mitigation of impacts from overlap with threatening 
activities [17, 68], where high certainty in model predic-
tion is needed.

Overall, our results refine and add to the delineation of 
suitable habitat for the Eastern Indian Ocean pygmy blue 
whale  [16] (Figs. 3, 4, 5, 6, 7, 8, S11) by increasing sam-
ple size, accounting for difference in habitat preference 
for different behaviours, expanding to include southern 
Australia and providing information on model accuracy 
in relation to the spatial predictions presented. Our vali-
dated predictions showed preference for foraging habitat 
along the shelf break (boundary between shelf and slope 
habitats, indicated by the 200  m bathymetry contour; 
see Figs.  3 and 4) in Western Australia with expanded 
use of slope habitat in the North  Wwest and some use 
of shelf in the South  West. Whereas, in southern Aus-
tralia, validated suitable foraging habitat occurred on 
both the slope and on the shelf with minor use of deep 
ocean. The preference for shelf break and slope was also 
observed in Western Australia during migration whereas 
migration in Southern Australia occurred almost exclu-
sively on the shelf. This finding concurs with previ-
ous studies that show that foraging behaviour of pygmy 
blue whales occurred mostly over the continental shelf 
in Southern Australia [14] and that foraging pygmy blue 
whales are often observed very close to the shore in the 
upwelling system off the Bonney Coast [69]. Our results 
match a previous analysis of suitable habitat for pygmy 
blue whales in Western Australia [16] with the analysis 
showing a strong association to the 1000 m bathymetry 
contour, which occurs in slope waters along the Western 
Australia coast. A similar pattern of preference for the 
shelf break habitat was identified by species distribution 
models for blue whales along the California coast [10, 
33]. Our results for high relative habitat suitability largely 
overlap with the spatial prediction of a high number of 
singers in the region during northward migration by [18] 
using spatial modelling of passive acoustic monitoring 
data.

Distance to canyons also displayed high relative impor-
tance in our models, particularly for foraging in South-
ern Australia and for migration in the North West, where 
high probability of occurrence occurred near canyons. 
This result in the southern Australia model was likely 
because a high density of canyons occurs along the Bon-
ney Coast supporting localised upwelling, and increased 
productivity, and thus suitable foraging habitat, within 
the Great Southern Australian Coastal Upwelling Sys-
tem [70, 71]. The prediction in the North West region, 
however, showed migration habitat was split between 

a deep ocean/ outer slope route and a shelf break/inner 
slope route, falling near but on either side of the canyons. 
This result is likely influenced by the oceanographic con-
ditions in this area which are driven by the Indonesian 
Throughflow and the Eastern Gyre [72].

The dynamic variable sea surface temperature was also 
an important predictor of pygmy blue whale distribution. 
Although the relationships between probability of occur-
rence and sea surface temperature were highly variable 
within and among regions, peaks of probability of occur-
rence with temperatures of 22–25  °C were observed in 
most regions in Australian waters, particularly during 
migration (Supplementary Material 1). A preference for 
this sea surface temperature range was observed in previ-
ous habitat analysis in the region [16] using part of the 
dataset (from [12]) used in this analysis. This could sug-
gest that there is a potential oceanographic trigger for 
the start of the northward migration within the forag-
ing areas in Australia, specifically, the strengthening of 
the Leeuwin Current during March/April which brings 
warmer waters poleward along the Western Australian 
coast [73]. This timing matches the start of the north-
ward migration with whales leaving their summer forag-
ing grounds around April [12, 14], and also in June [14], 
when the Leeuwin current is at its peak [73].

The strong relative influence of the dynamic variables 
of sea surface temperature and surface height anomaly, 
and even chlorophyll-a (though with overall low rela-
tive influence), that can change at fine temporal scales 
(weeks or days), suggests that suitable habitat will likely 
change with environmental conditions. This includes not 
only time of the year or season, but also in relation to 
oceanographic patterns of upwelling, eddies and during 
anomalistic events such as heat waves, or cyclones. For 
example, the presence of foraging pygmy blue whales was 
associated with increasing chlorophyll-a concentration 
in Timor Leste [30]. Additionally, vocalisations indica-
tive of foraging were strongly related to seasonal wind 
and coastal upwelling in New Zealand [34] and Chile 
[74], and blue whale occurrence was associated with 
thermal fronts off northern Chilean Patagonia [75] and 
mesoscale oceanographic features in the California Cur-
rent System [76]. Similarly, foraging, inferred by intensity 
of vocalisations, seemed to decrease during a heatwave 
[50]. The influence of dynamic variables calls for some 
caution in the inferences  from static maps of suitable 
habitat or biologically important areas often used for 
species management. Although we included month of 
the year in our models, the limited sample size (number 
of tracks and location points) for some months (most of 
the data restricted to April to June; see Fig. 1b) prevented 
us from providing monthly maps of suitable habitats. To 
overcome this issue and include a temporal aspect to our 
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results, our predictions used the average of the dynamic 
variables across the full temporal extent of the dataset 
within each modelled region and subset of the data. This 
was possible because pygmy blue whale showed clear 
seasonal movements within and between regions (see 
Fig. 1). Thus, the maps of suitable habitat we provide can 
be considered as the average suitable habitat for pygmy 
blue whales during the time they are present in each 
section of their distribution range in the Eastern Indian 
Ocean.

Our approach of splitting the data into regions for 
modelling also accounts for some of the temporal/sea-
sonal components of pygmy blue whale habitat selection 
[77] to avoid extreme extrapolation that can decrease 
model performance. In the future, with a larger sample 
size, we hope to be able to make our model predictions 
per month and ideally they would be predicted dynami-
cally [10]. Such dynamic predictions can allow for more 
efficient management of interactions between migratory 
species and potential threatening human activities than 
static areas. The concept of dynamic ocean management 
was developed to account for the shifting and complex 
nature of the ocean that can integrate animal tracking, 
remote sensing and advanced modelling techniques, with 
the potential of making predictions in near-real time [78, 
79]. Information obtained from animal tracking is well 
suited for such a management approach, particularly for 
threatened and/or highly mobile species [10, 80], when 
large sample sizes are obtainable. For example, dynamic 
ocean models have been successfully developed for the 
California Current Ecosystem as a fisheries management 
tool to minimise bycatch of threatened and protected 
species by the drift gillnet fishery [81, 82].

Global AUC and Kappa values for the models were 
good overall, however, spatial Kappa and AUC showed 
that the accuracy of predictions varied in space. There 
were several areas where high habitat suitability was pre-
dicted but for which the spatial accuracy metrics were 
low, namely foraging at Scott and Ashmore reefs, the 
offshore waters between Capes Naturaliste and Leeuwin, 
parts of the Great Australia Bight and oceanic waters in 
Southern Australia, and also migration habitat in south-
ern Western Australia (between Esperance and Albany) 
and Bass Strait. Thus, there is low confidence in the 
prediction of suitable habitat in these areas. This result 
occurred because we had no/limited presence points 
for those behaviours/areas. Having a greater sample size 
of tracked individuals would assist in determining the 
importance of these areas as our sample size is still small 
and thus likely insufficient to characterise habitat prefer-
ences for the entire stock or population [83, 84]. As such, 
it may also be more influenced by individual preferences 
[83] not accounted for in our models. Although other 

modelling methods can account for individual (ID) vari-
ability as a random effect (mixed models), our prelimi-
nary analysis showed that boosted trees performed better 
than generalised additive models and that the addition of 
a predictor of whale ID (proxy for assessing the potential 
random effect of individual  whale preferences) did not 
significantly influence the results of our models (Supple-
mentary Material 1). Our results are also likely influenced 
by some of the biases inherent to tracking data such as 
differences in deployment duration, resulting from pre-
mature tag detachment, or failure [85]. Other factors at 
play are that we had low temporal coverage in some of 
the modelled regions and low covariate resolution (1, 4 
and 17  km—see Table  1), particularly freely available 
remote-sensed data for offshore waters (https:// portal. 
aodn. org. au/), and missing values of covariate data which 
can have a large impact on the accuracy of model predic-
tions [86]. The issue of resolution is a main constraint 
of modelling species distributions with remote-sensed 
data, typically available at relatively large grid sizes, com-
pared to the scale of use by the animals [86, 87]. This 
issue is not easily resolved for wide-ranging and highly 
mobile marine species as we rely on remote-sensed data 
to model the relationship between species occurrence 
and environment over the extensive areas they use. To 
achieve this goal for pygmy blue whales in Australia, we 
must continue to increase sample size of tracked whales, 
including the southward migration [12, 18] and incor-
porate other sources of data such as localised structured 
surveys (for areas where pygmy blue whales are found 
closer to shore such as the Bonney Upwelling in South-
ern Australia [[14, 69]; Fig. 5], South West Western Aus-
tralia [[13, 88]; Fig.  4] and Ningaloo Reef [Fig.  3]), and 
improve the resolution of the environmental variables 
used in our modelling; for example, by complementing 
remote-sensed data with in situ measures [89]. Although 
it is impossible to obtain in situ measures for the entire 
distribution, improved environmental data within the 
important areas defined previously [18] or in areas of 
high exposure to threats [17], could assist in the develop-
ment of high-resolution dynamic models. In the interim, 
our outputs could inform recovery planning for this spe-
cies such as  the existing pygmy blue whale distribution 
maps and biologically important areas (see [31, 67]) that 
are currently under review. We show that large extents of 
suitable habitat are available for pygmy blue whales that 
can be used to inform the delineation of possible forag-
ing habitat, with results from analysis of tracking data 
by [18] and [14] informing high-use areas. Most impor-
tantly, our maps of model accuracy indicate areas where 
data is still limited, hence where interpretation of habitat 
maps and telemetry data should be made with caution. In 
these areas, our predictions can be combined with other 

https://portal.aodn.org.au/
https://portal.aodn.org.au/
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data sources such as passive acoustic monitoring, direct 
observations, and structured survey data.

Conclusions
The averaged spatial predictions and validated rela-
tive suitable habitat maps produced here can be useful 
for informing current management actions in Australia 
determined by the Conservation Management Plan for 
the Blue Whale [31], such as the need to delineate spa-
tial distribution of foraging and migration habitat for the 
species. However, the importance of dynamic covari-
ates in the model indicates that the relationship between 
whale occurrence and environment is not static in time 
or space, and so the habitat suitability maps presented 
here must be considered within the temporal context of 
each dataset.

In summary, this is the first quantitiative delineation of 
suitable habitat across the known distributional range of 
pygmy blue whales in the Eastern Indian Ocean provided 
with spatially varying metrics of model accuracy. Thus, 
our outputs provide an assessment of habitat suitability 
in relation to foraging and migratory movements as well 
as an assessment of how reliable our prediction maps are 
across the pygmy blue whale range. This information is 
needed by State and Commonwealth regulators, and the 
offshore industries, to support effective impact assess-
ment to evaluate the potential impacts of human activi-
ties on the pygmy blue whale population in the Eastern 
Indian Ocean.
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