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Natural hybridization reduces vulnerability 
to climate change

Chris J. Brauer    1, Jonathan Sandoval-Castillo    1, Katie Gates    1, 
Michael P. Hammer    2, Peter J. Unmack    3, Louis Bernatchez    4 & 
Luciano B. Beheregaray    1 

Under climate change, species unable to track their niche via range shifts 
are largely reliant on genetic variation to adapt and persist. Genomic 
vulnerability predictions are used to identify populations that lack the 
necessary variation, particularly at climate-relevant genes. However, 
hybridization as a source of novel adaptive variation is typically ignored 
in genomic vulnerability studies. We estimated environmental niche 
models and genomic vulnerability for closely related species of rainbowfish 
(Melanotaenia spp.) across an elevational gradient in the Australian 
Wet Tropics. Hybrid populations between a widespread generalist and 
several narrow range endemic species exhibited reduced vulnerability to 
projected climates compared to pure narrow endemics. Overlaps between 
introgressed and adaptive genomic regions were consistent with a signal of 
adaptive introgression. Our findings highlight the often-underappreciated 
conservation value of hybrid populations and indicate that adaptive 
introgression may contribute to evolutionary rescue of species with narrow 
environmental ranges.

The environmental conditions experienced by species throughout their 
evolutionary history contribute to determine their present-day niche 
and constrain their distributional limits1,2. Ancestral environments also 
shape contemporary patterns of standing genetic variation that are a 
key component of evolutionary potential. On the one hand, species 
that evolved in narrow environmental ranges may lack variation at 
genomic regions important for adaptation to a changing environment. 
On the other hand, generalist species that tolerate a much wider range 
of conditions may be better placed to respond to rapid climate change.

In predicting species’ vulnerability to rapid climate change, three 
evolutionary responses are typically considered: genetic adapta-
tion, dispersal to a more suitable environment or acclimation to the 
altered environment through phenotypic plasticity3. An alternative 
and perhaps complementary evolutionary mechanism that is less 
often assessed is interspecific introgression following hybridization. 
That is the transfer of genetic material from one species into another 
by repeated backcrossing. Through this process, vulnerable species 

may adopt and exploit aspects of the evolutionary history of species 
more suited to the changed environmental conditions4,5.

The role of hybrid populations in conservation is controversial 
due to concerns about diluting the genetic integrity of parental spe-
cies, as well as policy and legislative uncertainty6. Hybridization can 
potentially increase the risk of extinction via outbreeding depres-
sion, through demographic swamping due to infertile or maladapted 
hybrids, or by genetic swamping leading to complete replacement 
of the local gene pool7,8. The threat posed by these issues, however, is 
likely to be case-specific and may be less of a concern if hybridization 
is natural and has occurred over an extended period. Introgression 
as a source of novel genetic variation that can increase evolutionary 
potential is only recently gaining widespread appreciation, particularly 
in animals9. This has led to a call for hybrid populations to be given 
greater conservation value in policy and management decisions10. 
Hybrid zones could potentially facilitate evolutionary rescue of many 
species threatened by climate change5. This concept is also the basis 
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a suitable ectotherm system to investigate climatic-driven adaptive 
evolution24–31. They are a species-rich group of small fish found across 
the full spectrum of freshwater habitats in the Australian continent32. 
Their adaptive capacity to respond to projected climates appears to 
be biogeographically determined27 and their patterns of local adap-
tation are linked to hydroclimatic gradients and divergent thermal 
environments26,28–30. When experimentally exposed to future climates, 
rainbowfishes show associations between upper thermal tolerance and 
gene expression responses influenced by the biogeographic context 
where species evolved25,27,31. They also display range-wide differences 
in genotype and environment associations linked to seasonal variation 
in stream flow and temperature28,29, as well as to phenotypic traits that 
affect fitness26,30. The combined evidence from experimental and wild 
populations of Melanotaenia species24–31 supports the hypothesis 
that historical climatic variation, regional climatic differences and 
population connectivity influence variation in rainbowfish traits that 
determine regional patterns of adaptive resilience to climate change.

In this study we targeted five closely related species of tropical 
rainbowfishes that differ in predicted sensitivity to climate change. 
These include a widespread lowland generalist, Melanotaenia splendida  
splendida, and four narrow range specialists: the upland species  
M. eachamensis, Malanda rainbowfish and Tully rainbowfish (the  
latter two are undescribed), and the lowland species, M. utcheensis.  

of proposals for human-mediated evolutionary rescue of threatened 
species via translocations4,11,12.

Genomic vulnerability assessments are increasingly used to iden-
tify populations that lack the genetic variation likely to be important 
for adaptation to climate change13–15. A range of statistical methods 
has been used16–19, although the basic framework is mostly similar 
regardless of the approach (but see ref. 20). The first of two steps is 
to build a statistical model of the relationship between putatively 
adaptive genetic variation and the current environment. Secondly, 
this model is applied to projections of future environmental condi-
tions to predict the change in allele frequencies required to maintain 
present patterns of local adaptation (also termed genomic offset). In 
addition to estimating the amount of evolutionary change required, 
it is equally important to understand the capacity for that change to 
occur naturally. This second component, rarely assessed in studies of 
genomic vulnerability, infers whether the adaptive alleles are present in 
a population. Most studies have focused on abiotic factors influencing 
vulnerability, although species’ interactions and other evolutionary 
processes can also impact species’ responses to climate change21–23.

Here we explored an ideal biogeographic scenario involving 
rainbowfishes endemic to the Wet Tropics bioregion of northeastern 
Australia to assess whether natural hybridization can influence vulner-
ability to climate change. Rainbowfishes (genus Melanotaenia) are 
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Fig. 1 | Sampling locations and spatial patterns of hybridization for 
Melanotaenia splendida, Malanda rainbowfish, M. eachamensis,  
M. utcheensis and Tully rainbowfish. a, Sampling sites in the Wet Tropics of 
Queensland, Australia. b, Admixture plots for K = five ancestral species.  

c, Treemix maximum likelihood tree showing introgression among species.  
d, Topographic relief profile indicating the difference in elevation between 
upland and lowland habitat along a transect between sites 13 and 35.
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We henceforth refer to the four narrow range species as narrow 
endemic rainbowfishes (NERs). Melanotaenia splendida are widely dis-
tributed and abundant across northeastern Australia, whereas the NERs 
exhibit restricted distributions confined to short river valleys within 
and below the Atherton Tablelands (Fig. 1a)33. The study area is centred 
at a well-described contact zone between lineages of many species  
expanding from two major Quaternary refugia34–39. The Australian  
Wet Tropics bioregion is listed as a World Heritage Area and as a bio-
diversity hotspot. It is severely threatened by climate change, with 
the extinction of many endemic species predicted as temperatures 
increase and the cooler upland rainforest habitat disappears40. Since 
cessation of volcanic activity in the early Holocene, major drainage 
patterns have largely resembled the present-day arrangement41 and it 
is expected that M. splendida and the NERs have intermittently been in 
contact during most of that time. In the absence of large waterfalls sepa-
rating populations, species boundaries (and potentially hybrid zones) 
have probably been maintained by local hydroclimatic conditions 
associated with each species’ climatic niche. In the last few decades, 
climate change has resulted in M. splendida encroaching further into 
higher elevation habitat occupied by the NERs, and hybrids have been 
found where the species meet33,42. This has raised concerns over the 
potential for NER populations to become threatened with extinction 
due to hybridization with M. splendida42.

We constructed environmental niche models (ENMs) for all species  
to track range size variation throughout the Holocene and into the 
future. We predict that NERs, but not M. splendida, will lose large areas 
of suitable habitat under projected climates. We then used genotype–
environment association (GEA) analyses to identify candidate adaptive 
variation to estimate genomic vulnerability. We predict that hybrid 
NER populations will retain more adaptive alleles in the future and 
will require less evolutionary change to maintain patterns of local 
adaptation than pure NER populations. We also extended the genomic 
vulnerability framework to infer historical evolutionary responses to 
variation in climate throughout the Holocene. That extension enables 
the interpretation of future vulnerability estimates in the context of 
the rate and magnitude of past environmental changes. By examining 
patterns of hybridization and introgression between M. splendida and 
the NERs, we hypothesize that introgressive hybridization could be 
a source of novel adaptive variation that would be likely to facilitate 
evolutionary rescue of species threatened by climate change.

Genomic variation, hybrid detection and 
introgression
We examined 13,734 single nucleotide polymorphism (SNP) loci  
to reveal extensive patterns of hybridization and introgression 
among the 344 individuals representing the five species (Fig. 1 and 
Supplementary Table 1). More than 98% of SNPs mapped to one of 
24 pseudo-chromosomes and were evenly distributed (mean = 565, 
s.d. = 68.7 SNPs per chromosome; Supplementary Table 2). Estimates 
of genetic diversity varied across species and among sampling sites 
but were significantly elevated (expected heterozygosity (He); pair-
wise Wilcoxon rank sum, Bonferroni corrected P < 0.001) for hybrid 
populations compared with pure NER populations (Supplementary 
Tables 3 and 4).

Individual ancestry proportions43 for K = five ancestral species 
(Fig. 1b) were used to classify 167 individuals as pure (Q > 0.95) and 
85 individuals as M. splendida–NER hybrids (M. splendida and one 
NER Q > 0.1, all other species Q < 0.05). Pure individuals included 41  
M. splendida, 22 M. eachamensis, 36 Malanda rainbowfish, 57 M. utcheensis  
and 11 Tully rainbowfish. We found hybrids between M. splendida and  
M. eachamensis (31), Malanda rainbowfish (49) and M. utcheensis 
(5), while no hybrid Tully rainbowfish were identified. The pure and 
hybrid classifications were well supported by the hybrid index44 esti-
mates among M. splendida and each NER (Supplementary Table 5  
and Extended Data Fig. 1). Parental interspecific heterozygosity was 
marginally greater than expected based on hybrid indexes, suggesting 
the presence of ancestral polymorphisms in both parental species. 
Hybrid individuals showed reduced levels of interspecific heterozygo-
sity (Extended Data Fig. 2), providing evidence for advanced generation 
hybrids. Our maximum likelihood (ML) tree demonstrated that each 
lineage is monophyletic, although the best model supported nine 
migration events from M. splendida into NERs and one between NER 
species (Fig. 1c). NewHybrids45 simulations demonstrated the high 
power of our data to resolve hybrid classes providing an overall poste-
rior probability of >0.995 across all simulated genealogical classes for 
each species. Empirical results supported the other analyses in iden-
tifying advanced generation hybrids for all species (Supplementary 
Tables 5 and 6 and Extended Data Figs. 1 and 2). Overall, our findings 
support the hypothesis that contact between the narrow endemics and 
M. splendida has probably been recurrent over long periods of time.

To assess historical admixture and genome-wide introgression, 
we calculated D, f4-ratios and fdM statistics for all M. splendida–NER 
trios with Dsuite. We found strong evidence for introgression between  
M. splendida and M. eachamensis, M. utcheensis and Malanda rainbow-
fish with a significant excess of ABBA (positive D) for all trios (Table 1).  
Positive f4-ratios were also observed for all trios, indicating substan-
tial introgression from M. splendida into the three NERs (Table 1). 
Results for the sliding window statistic fdM identified 28 introgressed 
regions for the hybrid individuals from M. eachamensis, 26 for  
the hybrid Malanda rainbowfish and 18 introgressed regions for  
M. utcheensis. The introgressed regions were well distributed across 23 
of 24 pseudo-chromosomes (Supplementary Table 2) and contained 
153, 89 and 61 SNPs mapping to the main dataset for M. eachamensis, 
Malanda rainbowfish and M. utcheensis, respectively.

Environmental niche models
The ENMs based on maximum temperature of the warmest month 
(Bio05) and precipitation of the coldest quarter (Bio19) for M. splendida, 
M. eachamensis, M. utcheensis and Malanda rainbowfish (Extended 
Data Fig. 3) provided a good fit for the current species distributions 
(Supplementary Table 7). Throughout the Holocene, suitable habitat 
area for the NERs remained stable and similar to their recent historical 
known range. However, Malanda rainbowfish, for example, are pre-
dicted to lose as much as 92% of their current range by 2070 under the 
intermediate (RCP4.5) emissions scenario and more than 95% under the 
high (RCP8.5) emissions scenario (Fig. 2). A large area of high habitat 
suitability was confirmed for M. splendida throughout the Holocene, 
and ENMs based on projected 2070 climate suggested that most of 

Table 1 | Evidence for introgression from M. splendida to M. eachamensis and Malanda rainbowfish using D and f4-ratio 
statistics calculated by Dsuite

P1 P2 P3 D Z-score f4-ratio BBAA ABBA BABA

Malanda hybrids M. splendida 0.435 25.63 0.28 1017.31 305.34 120.31

M. eachamensis hybrids M. splendida 0.277 20.41 0.32 901.11 393.93 223.24

M. utcheensis hybrids M. splendida 0.236 12.84 0.25 766.96 394.28 243.78

BBAA are derived alleles shared by (P1, P2); ABBA are derived alleles shared by (P2, P3); BABA are derived alleles shared by (P1, P3)
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that area is likely to remain suitable for the species (Fig. 2). Due to the 
low number of occurrence records for Tully rainbowfish (they are only 
known from four locations), ENMs could not be reliably estimated for 
this species.

Climate adaptation and genomic vulnerability
The GEA analysis, temporal climatic change models and genomic vul-
nerability analyses together demonstrate the threat climate change 
poses to NERs (Fig. 3). Maximum temperature of the warmest month 
(Bio05) and precipitation of the coldest quarter (Bio19) were retained 
for the GEA analysis after accounting for correlated variables. The 
redundancy analysis (RDA) model was significant (R2 = 0.15, P < 0.001) 
and identified 211 candidate adaptive SNPs associated with the two 
climatic variables, with the first two axes explaining 15.99% and 12.84% 
of the variation constrained by the environment (Fig. 3a and Supple-
mentary Tables 8 and 9). Four candidate adaptive SNPs occurred in 
introgressed regions identified using the fdM sliding window statistic. 
These included one for Malanda–M. splendida hybrids and three for  
M. eachamensis–M. splendida hybrids. In total 163/211 GEA candidate 
SNPs were annotated to 158 genes, and 294/301 candidate introgressed 
SNPs were annotated to 201 genes (Supplementary Table 10). Gene 
ontology enrichment analyses revealed several enriched categories 
for the GEA candidates (q < 0.05), including mitogen-activated pro-
tein kinase signalling pathway genes that have regulatory functions  
on heat shock proteins and cellular responses to thermal stress46  
(Supplementary Table 11). Annotation of genomic positions and  
predicted functional effects indicated that a substantial number of 
candidate SNPs were in exons, with expected moderate to high impact 
on gene function (Extended Data Fig. 4).

The environmental niche PCA highlights the much larger environ-
mental envelope occupied by M. splendida compared with NERs. The 
lowland specialist M. utcheensis inhabits a warmer and wetter environ-
ment than the upland species that are restricted to much cooler condi-
tions (Fig. 3b). The climate change PCAs reveal relatively little variation 
in climate over approximately 10 ky from the early Holocene until the 
present. However, for 2070 the climate is expected to become much 
hotter and slightly drier (RCP8.5 projections; Fig. 3c–f).

Following model calibration based on the current environment 
and observed candidate adaptive allele frequencies, eight populations 

for which the AlleleShift model performed poorly (R2 < 0.5) were not 
considered in the final vulnerability estimates47. Allele frequencies 
were then predicted for the remaining 28 sampling sites for historic 
(Fig. 4a) and projected future environments (Fig. 4b). Melanotaenia 
splendida ancestry was a reasonable predictor of genomic vulnerability 
(R2 = 0.11, P < 0.04) supporting the hypothesis that introgression with 
M. splendida may provide an evolutionary rescue effect for NER species 
most vulnerable to climate change (Fig. 4c). Allele frequencies of the 
candidate loci were estimated for each species and the percentage of 
loci missing the adaptive allele (based on the future climate models) 
were aggregated for pure and hybrid populations (Fig. 4d). Populations 
of pure Malanda rainbowfish lacked 30% of adaptive alleles, whereas 
hybrid Malanda populations had variation at >99% of candidate loci. For 
M. utcheensis, 26% of adaptive alleles were missing from pure popula-
tions with just 2% of adaptive alleles absent from hybrid populations. 
Pure populations of M. eachamensis appeared less depauperate than 
the other NERs with 13% of adaptive alleles absent, while only 7% of 
adaptive variation was missing from hybrid populations. In contrast, 
pure M. splendida populations were missing just 0.4% of adaptive 
alleles.

Discussion
Our genomic vulnerability assessments reveal that populations of nar-
row endemic rainbowfishes which demonstrate introgressive hybridi-
zation with a warm-adapted widespread generalist also exhibit reduced 
genomic vulnerability to climate change. This supports the hypothesis 
that natural evolutionary rescue may moderate the effects of climate 
change for these populations. Examining the genomic vulnerability 
estimates in the context of historical ENMs indicated that the evolu-
tionary change required in the next 50 years far exceeds that which is 
likely to have occurred since the early Holocene. These findings are 
consistent with evidence from experiments of adaptive resilience to 
projected climates, and from range-wide surveys of adaptation which 
indicated that physiological performance limits and adaptive capacity 
in rainbowfishes are closely linked to local climatic conditions and range 
sizes25–31. Our approach expands on assessments of genomic vulner-
ability15,17,48–50 by considering the potential for adaptive introgression 
to enhance longer-term genomic responses to rapid environmental 
changes. Hybrid populations were shown to be less vulnerable, based 
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on both the amount of evolutionary change required (that is, adaptive 
allele frequency change) and the capacity for that change to occur 
naturally (that is, whether the adaptive alleles are present). The lat-
ter is an often-overlooked component of genomic vulnerability and 
one that highlights the importance of standing genetic diversity for 
evolutionary potential.

Increasing empirical work demonstrates that introgression can 
accelerate adaptive shifts in response to environmental change51–54 
which might help lineages threatened by climate warming55–57. For 
example, there is strong evidence for adaptive introgression between 
archaic humans58, and also among more modern human populations59 
that probably facilitated rapid adaptation to new environments. Nolte 
et al.60 identified a hybrid population of sculpins (Cottus gobio) that 
were able to invade habitat unsuitable for either of the two parental 
lineages. One striking aspect of this example is the speed at which the 
hybrid population was able to adapt, with evidence that divergent 
phenotypic and life history traits arose along with the new habitat 
preferences in just a few decades. Our findings are consistent with 
a signal of adaptive introgression that could promote evolutionary 
rescue of cool-adapted species. This interpretation, however, requires 
further validation via common garden experiments (for example,  
ref. 61) to provide fitness estimates for the parental and hybrid lineages 
in current and predicted temperatures.

Contact between the cool-adapted rainforest species and 
warm-adapted lowland species has probably occurred recurrently 
throughout the Quaternary, consistent with findings for many lineages 

in this region62,63. Rainbowfish ecotypes are known to be constrained 
by climate26–30, and previous experiments of upper thermal tolerance 
and adaptive resilience to projected temperatures indicate that bio-
geographic factors might strongly influence climate change vulner-
ability25,27,31. The hybrid zones examined here have also probably been 
maintained by the respective climatic niches of the parental species, 
although the ENMs predict that by 2070 Malanda rainbowfish may 
lose >95% of suitable habitat, and M. eachamensis face >92% reduction 
(RCP8.5 projections). As the cooler upland climatic niche retreats, 
it is unclear to what extent pure and hybrid NER populations might 
either persist or be replaced completely by M. splendida. Translocat-
ing pure populations of upland species outside their current range is 
unlikely to provide a long-term solution as they currently occupy the 
only remaining cool tropical montane rainforest region on mainland 
Australia. Their impending niche loss coupled with high genomic vul-
nerability potentially provides few options for conservation managers 
in the future. We suggest that low levels of introgression (for example 
sites 10 and 16) should not be cause for concern and these populations 
should be afforded the equivalent conservation status as pure popula-
tions. We also argue that more advanced hybrid populations should be 
conferred greater value for their potentially crucial role in retaining 
unique diversity from the NER lineages in the future. These popula-
tions may also buffer species-level vulnerability in the short term, 
either directly via introgressed adaptive alleles or through indirect 
effects such as increased local effective population sizes64. Interest-
ingly, although M. utcheensis is a lowland species and has evolved in a 
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warmer environment, populations of this species exhibit some of the 
highest genomic vulnerability and lowest adaptive capacity to future 
conditions. While the coastal lowland environment of M. utcheensis 
appears to have remained relatively stable throughout the Holocene, 
populations may have been isolated by their unique climatic niche 
and we found little evidence for gene flow via hybridization. This high-
lights that the evolutionary history of specialist warm-adapted species 
could render them more vulnerable to climate change than might be 
expected.

In 1985, Soule65 described the (then) emerging field of conserva-
tion biology as a crisis discipline, and this has never been more true 
than now. The rate of anthropogenic climate change is challenging 
many species to mount evolutionary responses to environmental 

changes occurring on an ecological time scale. Conservation biologists 
and managers are also increasingly obliged to make difficult deci-
sions without the time or resources necessary to fully understand the 
potential implications of these decisions. The genetic and demographic 
consequences of hybridization are difficult to predict but should be 
carefully considered when assessing whether possible negative effects 
are offset by potential gains in adaptive resilience. Here we identified 
long-established hybrid rainbowfish populations harbouring poten-
tially important and novel genetic variation for responding to climate 
change. These populations would typically be ignored in management 
plans that focus on maintaining pure lineages66,67. The high resolution 
of modern genomic techniques can reveal subtle signals of admixture 
and managers must be cautious in how they interpret invasiveness and 
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the threat of hybridization68. Nonetheless, the ability to more precisely 
characterize ancestry means that patterns of hybridization can be well 
defined. Our work highlights the conservation value of hybrid popula-
tions and exemplifies how adaptive introgression may contribute to 
natural evolutionary rescue of species threatened by climate change.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41558-022-01585-1.
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Methods
Study system
Thought to have a Gondwanan origin, rainbowfishes (Melanotaeniidae) 
are the most speciose freshwater fish family endemic to Australia and 
New Guinea69. Multiple lineages exist sympatrically which occasion-
ally hybridize32,69, and many species readily do so in captivity70. This 
tendency may have helped facilitate their rapid adaptive radiation (for 
example, ref. 71) across the diverse range of climatic ecoregions they 
now inhabit within Australia32. Previous work, including for the general-
ist M. splendida splendida, has identified genomic signatures of local 
adaptation and adaptive plasticity associated with biogeographic his-
tory, hydroclimatic variation and projected climates25–31. Additionally, 
rainbowfishes are renowned for their high morphological diversity72,73, 
and strong links between morphological variation and local adaptation 
have also been established for several Australian species, including for 
the NER, M. eachamensis24,30,74.

Sampling and genomic data
Samples for 344 individuals from five Australian rainbowfish species69 
were collected from 38 sites in the Australian Wet Tropics (Supplemen-
tary Table 1). In addition to the five focal species, two samples from a 
sixth rainbowfish species, M. trifasciata, were also included as an out-
group69. Fish were either sampled live and returned to the water with 
caudal fin clips stored in 100% ethanol, or euthanized in an overdose  
of AQUI-S solution (50% isoeugenol), frozen in liquid nitrogen and 
stored at −70 °C in the Australian Biological Tissues Collection at the 
South Australian Museum, Adelaide.

DNA was extracted following a modified salting-out protocol75 with 
DNA assessed for integrity using gel electrophoresis and for purity with 
a NanoDrop 1000 spectrophotometer (Thermo Scientific). Double 
digest restriction-site-associated DNA sequencing libraries76 were 
prepared using the restriction enzymes SbfI and MseI (New England 
Biolabs). Using custom individual barcodes to multiplex samples 
(96 per lane for all ingroup samples and 48 per lane for the outgroup 
samples), libraries were randomly assigned to each of seven Illumina 
HiSeq2500 lanes and sequenced as single-end, 100 base pair (bp) reads. 
Raw sequencing data were demultiplexed using the process_radtags 
module from STACKS 2.477. Individual fastq files were trimmed using 
Trimmomatic v.0.3978 and aligned to a M. duboulayi reference genome 
using Bowtie2 v.2.3.5.179. The SAM files were converted to BAM files and 
duplicate reads were marked and removed using Picard v.2.21.7 (https://
github.com/broadinstitute/picard), before using GATK v.3.8-1-0 (ref. 80) 
for indel realignment. BCFtools v.1.9 (ref. 81) (bcftools call -m) was used 
to call SNPs. Raw genotypes were filtered for missing data, mapping 
quality (>30), HWE, MAF (>0.01) before pruning to reduce the effect of 
linkage disequilibrium. We first estimated linkage disequilibrium decay 
across the genome and plotted pairwise R2 among 66,762 raw SNPs 
before fitting a spline of exponential decay to estimate the distance in 
base pairs at which decay is no longer significant (P > 0.05) based on 
Tukey’s criteria for anomalies. We found that average R2 did not change 
significantly after 605 bp and pruning SNPs <300 bp apart resulted in 
99.3% of SNP pairs separated by >100 Kbp, with <0.005% separated by 
less than 600 bp (Supplementary Table 12).

Genomic variation, hybrid detection and introgression. Genetic 
diversity summary statistics of expected heterozygosity (He), observed 
heterozygosity (Ho) and percentage of polymorphic loci were esti-
mated for each sampling site and for aggregated pure and hybrid 
populations per species using the hierfstat R package82. We used a 
Wilcoxon rank sum test implemented in the stats R package83 (pairwise.
wilcox.test) to assess differences in heterozygosity among pure and 
hybrid populations of the NERs.

To identify individuals with hybrid ancestry we first used ADMIX-
TURE v.1.3.0 to estimate individual ancestry proportions (Q) assuming 
a K value of five ancestral species43. We determined pure individuals as 

those with a Q value of >0.95. Hybrid status was assigned to individuals 
with both M. splendida and one other species with ancestry of >0.1, with 
the remaining species’ Q values <0.05. This allowed the evaluation of 
introgression between M. splendida and each of the narrow endemic 
species while reducing noise associated with individuals with multiple 
species ancestry. To additionally assess patterns of hybrid ancestry 
we estimated hybrid indices using the method implemented in the 
gghybrid R package84 and generated triangle plots to visualize the 
relationship between interspecific heterozygosity and hybrid index. 
We also performed simulations using NewHybrids v.1.1 (ref. 45) and the 
Hybriddetective R package85 to test the power of our data for detecting 
hybrids and to assign individuals to hybrid classes. We selected panels 
of around 200 informative SNPs and generated three replicates of three 
simulations with pure parents, F1, F2, and backcrosses between F1 and 
pure parents. Samples were then assigned to hybrid classes, based on 
the posterior probability thresholds estimated with the simulations. 
We used a Jeffreys-like prior and default genotype proportions with 
a burn-in of 20,000 iterations followed by 200,000 MCMC sweeps.

We used Treemix86 to examine introgression between branches 
of the rainbowfish phylogeny. This method models both topology and 
gene flow by first using allele frequencies and a Gaussian approxima-
tion for genetic drift to estimate a ML tree. The residual fit of the ML 
tree is used to identify populations that are a poor fit to the tree, before 
migration edges are fitted between branches in stepwise iterations 
to maximize the likelihood. We ran Treemix testing 1–20 migration 
events, using blocks of 500 SNPs (-k 500), no sample size correction 
(-noss) and two M. trifasciata samples as an outgroup. The final model 
was selected as the number of migration events at the asymptote of the 
log-likelihood estimations for all models.

Based on the ADMIXTURE results we used Dsuite87 to assess 
gene flow between M. splendida and the other species and to identify 
introgressed loci. For these analyses we refiltered the original raw 
genotypes, based on the 249 pure and hybrid individuals (as described 
above). The data were again filtered for missing data (<20%), MAF 
(>0.01), although the HWE filter was not applied as divergent allele 
frequencies are expected among species. PLINK v.1.9 (ref. 88) was used 
to prune the SNPs for linkage disequilibrium (–indep 50 5 2). The result-
ing 27,009 SNP dataset was used to calculated Patterson’s D89,90, also 
known as the ABBA–BABA statistic based on the tree (((P1,P2),P3),O). 
The D and f4-ratio statistics were calculated using the Dtrios function in 
Dsuite with default parameters. Trios were assessed to test the hypoth-
esis of introgression between M. splendida and each of the NERs for 
which hybrids fitting the above criteria existed. In this case we tested 
trios where P1 represented the pure narrow endemic samples, P2 the 
hybrid samples, P3 the pure M. splendida samples and O the outgroup, 
M. trifasciata. In addition to assessing evidence for gene flow between 
M. splendida and the narrow endemics, we also estimated the sliding 
window statistic fdM

91 to identify specific introgressed genomic regions. 
Implemented with the Dinvestigate function in Dsuite, a sliding window 
of 50 SNPs with a step of 10 SNPs was used (-w 50,10). Windows in the 
top 5% of the fdM distribution were considered as candidate introgressed 
loci. Overlapping candidate windows were merged using BEDtools 
v.2.29.1 (ref. 92) to provide a minimum set of candidate regions for 
each trio. We then used BCFtools view to map the 13,734 SNP dataset 
to the candidate introgressed regions to identify any overlap with the 
candidate climate-adapted SNPs.

Ecological niche models. Bioclimatic (BIOCLIM) variables were 
extracted from CHELSA v.1.2 (refs. 93,94). Projections for 2070 under 
intermediate (RCP4.5) and high (RCP8.5) emissions scenarios were 
also obtained from CHELSA based on the Australian Community 
Climate and Earth System Simulator (ACCESS1.0) global circulation 
model95. Historic climate models (also derived from CHELSA) were 
downloaded from PaleoClim96 for the early Holocene (11.7–8.326 ka), 
mid Holocene (8.326–4.2 ka) and late Holocene (4.2–0.3 ka)97. These 
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data were resampled from 2.5 arc-minutes to match the current and 
future datasets’ 30 arc-second resolution. All rasters were cropped 
to an area encompassing the catchments from which samples were 
obtained. Coastlines for all time periods were also cropped to the cur-
rent coastline to control for the effect of sea level changes throughout 
the Holocene. This was to enable direct comparison of habitat suit-
ability across time periods for the specific extent of potential habitat 
available now and in the future (2070).

To predict species vulnerability to climate change, ecological 
niche models were generated for each species and each time period 
using biomod2 v.3.4.6 (ref. 98). In addition to locations for the genomic 
samples, occurrence data for a further 420 locations within the study 
extent were obtained from the Atlas of Living Australia (ALA; http://
www.ala.org.au). These data were filtered for duplicate entries, geo-
graphic accuracy and to remove outliers based on known distribu-
tional limits. To avoid collinearity among variables, and to reduce the 
likelihood of overfitting the RDA and environmental niche models, we 
initially conducted a PCA on raster data from all 19 BIOCLIM variables 
across the study area using the raster_pca function from the synoptReg 
R package99. We then selected one temperature and one precipita-
tion variable that most highly correlated with the first two axes of the 
initial climate PCA to ensure that spatial variation in climate was well 
captured. The ecological importance of the retained variables, maxi-
mum temperature of the warmest month (Bio05) and precipitation of 
the coldest quarter (Bio19), has also previously been demonstrated in 
studies of rainbowfish adaptation26–28. Ensemble models were built 
using four commonly used algorithms: maximum entropy (Maxent), 
generalized linear model (GLM), generalized boosting model (GBM) 
and random forest (RF)100. Five hundred pseudo-absences were ran-
domly selected from the model extent. Each model was replicated three 
times and those with a relative operating characteristic curve statistic 
of >0.8 were retained. The weighted mean of probabilities ensemble 
models for each species were converted to binary representation using 
a probability threshold of 70% and used to estimate relative range sizes 
at each time period. A more sophisticated method of determining the 
binary threshold (minimum suitability of the top 90% of training sites) 
was trialled initially, which was found to bias the narrow endemic spe-
cies range estimates downwards due to limited occurrence records. 
After exploring a range of parameters, we found that using the 70% 
suitability threshold provided a good balance between model accuracy 
and precision across all species.

Climate adaptation and genomic vulnerability. To identify a candi-
date set of climate-adapted loci for tropical Australian rainbowfish we 
used a GEA analysis using RDA to detect associations between popula-
tion allele frequencies and the same two climatic variables used for the 
ENMs (Bio05 and Bio19). To control for the nonlinear spatial phyloge-
netic structure in the RDA, we estimated Moran’s eigenvector maps 
(MEM)101 using the mgQuick function from the MEMGENE R package102, 
before using a forward selection procedure to identify significant 
MEM eigenvectors to use as conditioning variables. We used the rda 
function in the vegan R package103 and tested significance of the final 
model using the anova.cca function and 1,000 permutations. The mean 
locus score across all SNPs was calculated for each of the first two RDA 
axes, and those scoring greater than three standard deviations from 
the mean were considered candidates for hydroclimatic selection104. 
Overlap between the GEA and introgressed candidate loci identified 
were considered as potential signals of adaptive introgression. We 
used SnpEff105 to perform gene, genomic position and functional effect 
annotations for the candidate loci based on the M. duboulayi genome. 
Gene ontology terms and Kyoto Encyclopedia of Genes and Genomes 
pathway enrichment analyses were explored using the STRING  
web server106.

To assess changes in the environment since the early Holocene, 
and how climate is predicted to change over the next 50 years, principal 

components analyses (PCA) were performed on climate data for each 
time period based on the retained bioclim variables from the RDA. 
The population.shift function from the AlleleShift R package19 was 
then used to visualize and compare the magnitude and direction of 
environmental changes between periods. An additional PCA was also 
performed using the retained current environmental data and plot-
ting convex hulls surrounding the sampling sites for each species to 
highlight the relative size and any overlap of the environmental niche 
space occupied by each species.

AlleleShift was also used to model the rate of past evolutionary 
change and to predict future genomic vulnerability based on the  
candidate adapted loci. An initial two-step calibration first used RDA  
to build a model (AlleleShift::count.model) and predict the relationship 
between allele counts and the environmental data (AlleleShift::pred.
model). Secondly, the predicted allele counts were used as inde-
pendent variables in a generalized additive model with observed  
allele frequencies as the response (AlleleShift::freq.model). This step 
constrains the final allele frequency predictions to fall between 0 and 1.  
Model fit was then evaluated for each population and those for which 
the model performed poorly (R2 < 0.5) were omitted from the final 
analyses as suggested by Blumstein et al.47. Based on the calibrated 
allele frequency–environment model, allele counts were predicted  
for the 2070 projected environmental data and then converted to  
allele frequencies to enable direct comparison. Genomic vulnerability 
was then expressed simply as the difference between median values  
of the observed and predicted allele frequencies among the current and 
projected environmental models (referred to as delta allele frequency). 
Allele frequency shifts were also estimated using the historic envi-
ronmental models to help interpret the genomic vulnerability assess-
ments in the context of inferred rates of evolutionary responses to  
climate change throughout the Holocene. To test the hypothesis  
that hybrid populations show reduced genomic vulnerability to  
climate change, we constructed a linear model examining the  
relationship between genomic vulnerability and the proportion of  
M. splendida ancestry for each population. Finally, to assess the capac-
ity for the pure NER populations to adapt in situ assuming no gene  
flow from M. splendida or the hybrid populations, we identified 
how many loci were missing the adaptive allele (as predicted by the 
AlleleShift model).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Melanotaenia duboulayi reference genome assembly is available at 
NCBI GenBank accession number JAPDEC000000000. Genotypes for 
the 13,734 and 27,009 SNP datasets and environmental data files can be 
accessed on Figshare: https://doi.org/10.6084/m9.figshare.21692918 
(ref. 107).

Code availability
Code can be accessed on GitHub at https://github.com/pygmyperch/
NER (ref. 108).
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Extended Data Fig. 1 | Hybrid index estimations among Melanotaenia 
splendida and narrow endemic species (NERs). a) M.eachamensis, b) Malanda 
rainbowfish and c) M. utcheensis populations. Pure reference populations are 
coded as S0 (blue, M. splendida), S1 (red, NERs). The point estimates are based on 

the mode from the posterior distribution, and error bars indicate 95% credibility 
intervals based on an initial burn-in of 1000 MCMC iterations followed by 
5000 iterations. Dashed blue and red lines define the 95% credible intervals for 
classifying a sample as parental or hybrid.
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Extended Data Fig. 2 | Triangle plots contrasting hybrid index with 
interspecific heterozygosity among Melanotaenia splendida and narrow 
endemic species (NERs). a) M.eachamensis, b) Malanda rainbowfish and c) 
M. utcheensis populations. Parental interspecific heterozygosity is marginally 

greater than expected for all species, suggesting the presence of ancestral 
polymorphisms in both parental species. Hybrid individuals show reduced levels 
of interspecific heterozygosity, providing evidence for advanced-generation 
hybrids.
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Extended Data Fig. 3 | Weighted mean of probabilities ensemble 
environmental niche models built from individual Maximum Entropy, 
Generalised Linear Model, Generalised Boosting Model, and Random Forest 
models. a) Melanotaenia splendida, b) Malanda rainbowfish, c) M. eachamensis, 
and D) M. utcheensis climate models for the early-Holocene (11.7–8.326 ka),  

mid-Holocene (8.326–4.2 ka) and late-Holocene (4.2–0.3 ka) and projected 
models for 2070 under intermediate (RCP4.5) and high (RCP8.5) emissions 
scenarios were obtained from CHELSA v1.1 and based on the Australian 
Community Climate and Earth System Simulator (ACCESS1.0) global circulation 
model. Plot axes are (°E, °S).
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Extended Data Fig. 4 | Genomic and functional annotation of candidate SNP loci. Annotation by a) genomic region, b) functional effect, and c) impact of 211 
genome environment association (GEA) candidates, and 301 introgression regions (INTRO) candidates, based on the crimson spotted rainbowfish (Melanotaenia 
duboulayi) genome annotation.
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