

Biological Journal of the Linnean Society, 2010, 100, 457-481. With 4 figures

'After Africa': the evolutionary history and systematics of the genus *Charaxes* Ochsenheimer (Lepidoptera: Nymphalidae) in the Indo-Pacific region

CHRIS J. MÜLLER^{1*}, NIKLAS WAHLBERG² and LUCIANO B. BEHEREGARAY^{1,3}

¹Molecular Ecology Laboratory, Department of Biological Sciences, Macquarie University, Talavera Rd., Sydney, 2109, Australia

²Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Vesilinnantie 5, Finland

³School of Biological Sciences, Flinders University, Sturt Rd., Adelaide, SA 5001, Australia

Received 4 September 2009; revised 14 December 2009; accepted for publication 15 December 2009

The predominantly Afrotropical genus Charaxes is represented by 31 known species outside of Africa (excluding subgenus Polyura Billberg). We explored the biogeographic history of the genus using every known non-African species, with several African species as outgroup taxa. A phylogenetic hypothesis is proposed, based on molecular characters of the mitochondrial genes cytochrome oxidase subunit I (COI) and NADH dehydrogenase 5 (ND5), and the nuclear wingless gene. Phylogenetic analyses based on maximum parsimony and Bayesian inference of the combined dataset implies that the Indo-Pacific Charaxes form a monophyletic assemblage, with the exception of Charaxes solon Fabricius. Eight major lineages are recognized in the Indo-Pacific, here designated the solon (+African), elwesi, harmodius, amvcus, mars, eurialus, latona, nitebis, and bernardus clades. Species group relationships are concordant with morphology and, based on the phylogeny, we present the first systematic appraisal and classification of all non-African species. A biogeographical analysis reveals that, after the genus originated in Africa, the evolutionary history of Charaxes in the Indo-Pacific, in particular Wallacea, may be correlated with the inferred geological and climatic history of the region. We propose that Wallacea was the area of origin of all Charaxes (excluding C. solon) occurring to the east of Wallace's [1863] Line. The earliest Indo-Pacific lineages appear to have diverged subsequent to the initial fragmentation of a palaeo-continent approximately 13 million years ago. Further diversification in Indo-Pacific Charaxes appears primarily related to climatic changes during the Pliocene and possibly as recently as the Pleistocene. Although both dispersal and vicariance have played important roles in the evolution of the genus within the region, the latter has been particularly responsible for diversification of Charaxes in Wallacea. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 457-481.

ADDITIONAL KEYWORDS: biogeography – DIVA – Miocene – molecular phylogeny – plate tectonics – Pliocene.

INTRODUCTION

Butterflies are among the most well studied invertebrates, with most species probably already described. In particular, the family Nymphalidae has been the subject of numerous phylogenetic and biogeographical studies in recent years (Simonsen *et al.*, 2006; Wahlberg, 2006; Brown *et al.*, 2007; Wahlberg & Freitas, 2007; Wahlberg & Saccheri, 2007; Peña & Wahlberg, 2008; Kodandaramaiah & Wahlberg, 2009; Leneveu, Chichvarkhin & Wahlberg, 2009). Most of these have been at the genus level. Those pertaining to species level phylogenies are essentially for groups occurring outside of the Indo-Pacific [e.g. the genera *Pararge* (Hübner) (Weingartner, Wahlberg & Nylin, 2006) and *Junonia* (Hübner) (Kodandaramaiah & Wahlberg, 2007)]. In the Indo-Pacific, published species-level molecular phylogenies are few for butterflies [e.g.

^{*}Corresponding author. E-mail: cmuller@bio.mq.edu.au

Arhopala Boisduval (Megens *et al.*, 2004) and *Ornithoptera* Boisduval (Morinaka *et al.*, 2000)]. Indeed, no studies incorporating multiple DNA regions for all known species in a genus have been published.

Despite being poorly known generally, the biogeography of taxa occurring in the Oriental and Australian (Indo-Pacific) zoogeographical regions has been of great interest to evolutionary biologists ever since Wallace (1863) first formalized the faunal affinities of these areas. Wallace (1863) noted a major faunal discontinuity between the islands of Borneo and Sulawesi in the north and Bali and Lombock [Lombok] in the south. This discontinuity separated areas which he termed the 'Indo-Malayan Region', in the west and the 'Austro-Malayan Region' to the east of what has become popularly known as Wallace's Line. The area between Wallace's [1863] Line and Weber's Line was named Wallacea by Dickerson (1928). Dickerson also included the Philippines as part of Wallacea but more recent references (Vane-Wright, 1990; Hall, 2009) to the region tend to exclude the Philippines, which we adopt here. Studies documenting how the historical geology of the Oriental and Australian regions may have affected the evolutionary history of a variety of taxa (Austin, 1999; Brown & Guttman, 2002; Cannon & Manos, 2003; De bruyn, Wilson & Mather, 2004) generally have focussed on either region, with negligible studies recognizing the significance of Wallacea itself (Beheregaray, 2008). Indeed, Wallacea has commonly been considered as a transitional zone between the Oriental and Australian regions (Braby & Pierce, 2007).

Comprehensive, fine-scale species-level phylogenies can provide a more accurate account of more recent historic biogeography than genus or species-group level phylogenies. In the present study, we use all known non-African *Charaxes* species to explore the history of diversification in the Oriental and Australian region, especially the 'transitional' Wallacea. Several of these *Charaxes* species are poorly known and/or represent recently described taxa. Indeed, the highly distinctive *C. marki* Lane & Müller is known only from the holotype (Lane & Müller, 2006). This work forms part of a larger study that demonstrates Wallacea is not only a transitional zone, but also comprises a very unique area, with distinct geological and biogeographic histories.

THE GENUS CHARAXES

Charaxes butterflies, commonly known as Rajahs, Pashas, and Emperors, are popular with naturalists, artists, researchers and collectors worldwide. Both adults and early stages are striking, with the former being exceptionally robust and characterized by very powerful flight. The genus is most richly represented in Africa, where estimates of the number of recognized species currently vary. Henning (1989) suggested 152 species, whereas Williams (2008) recognized 169. Both authors, sensu Van Someren (1975), recognize 19 putative species groups for the African Charaxes. One predominantly African species, Charaxes jasius (Linnaeus), also occurs throughout much of the Mediterranean. Although African Charaxes are diverse, many species, especially the 'black' Charaxes of the etheocles group, are cryptic and have been accorded specific status only in recent vears. A recent molecular study of African Charaxes found that three species groups were not monophyletic entities and that the genera Euxanthe and Polvura are nested within Charaxes (Aduse-Poku, Vingerhoedt & Wahlberg, 2009). They also found that the two species of Asian Charaxes sampled in their study did not form a monophyletic entity, with Charaxes solon being related to Charaxes jahlusa, and Charaxes bernardus to the candiope group.

Although the African taxa have been the subject of intensive research over the decades, the remaining 31 known species that occur within the Oriental and Australian region have received much less attention and are the primary focus of the present study. Outside of Africa and the Mediterranean, *Charaxes* is distributed from Sri Lanka and India through South-East Asia to mainland New Guinea, the Bismarck Archipelago and far northern Queensland. Only one species, *Charaxes latona* Butler, occurs east of Maluku, eastern Indonesia.

Nearly all species inhabit tropical, dense, lowland rainforest, although a few Indonesian taxa (e.g. Charaxes mars Staudinger, Charaxes orilus Butler, and Charaxes marki) prefer higher altitudes. The latter two species, together with Charaxes ocellatus Fruhstorfer and Charaxes elwesi Joicey & Talbot, are restricted to monsoonal vine thicket in the Lesser Sunda Islands, Indonesia. Adult males are most commonly observed on the semi-open tops of steep, jungle-clad hills or along creeks where they patrol in search of urine, dung or carrion on which to feed. Females are generally seen flying directly through forest, sometimes at great height, often in search of oviposition sites. Larvae of Charaxes are known to feed on a number of plant families and certain species are polyphagous. However, the life histories of comparatively few Indo-Pacific Charaxes have been recorded.

Many Indo-Pacific *Charaxes* species have limited ranges, being restricted to certain small islands or archipelagos. Others, particularly those occurring to the west of Wallace's Line in the Oriental Region, are more widespread. For these reasons, the genus constitutes an ideal subject for detailed biogeographical analysis. Because the systematics of Indo-Pacific *Charaxes* has not been previously reviewed in any detail, we present a new classification based essentially on molecular systematics.

MATERIAL AND METHODS TAXON SAMPLING

For the combined analysis, 65 exemplars (see Appendix, Table A1) were sampled, representing all known species of Charaxes occurring outside of Africa. Additionally, a number of divergent Charaxes taxa were included in the analysis, from several of the 19 putative species groups endemic to Africa proposed by van Someren (1969–75) and Henning (1989). Six species, also from the butterfly family Nymphalidae, were selected as outgroup taxa, namely Calinaga buddha Moore, Anaea troglodyta (Fabricius), Archaeoprepona demophon (Linnaeus), Prothoe franck (Godart), Polyura moori (Distant), and Euxanthe eurinome (Cramer) (see Appendix, Table A1). We selected outgroup taxa based on inferred phylogenetic relationships proposed by Wahlberg & Wheat (2008). The trees were rooted with C. buddha (Calinaginae). In total, the final data set for the combined analysis thus comprised 58 taxa (52 Charaxes, of which 41 were non-African). This data set is particularly significant because it is entirely comprehensive at the species level with respect to non-African Charaxes (excluding subgenus Polyura).

MOLECULAR MARKERS

Three genes [cytochrome oxidase subunit I (COI) and NADH dehydrogenase 5 (ND5), and the nuclear wingless gene] were used to infer phylogenetic relationships between the species and species-groups of Charaxes. All of these gene fragments have been widely used in insect phylogenetic research and show variable rates of substitution. Hence their combination is ideal for resolving divergence at different levels. COI has shown great utility for resolving shallow (recent) divergence events in Lepidoptera (Caterino, Cho & Sperling, 2000; Sperling, 2003). ND5 is a rapidly evolving protein-encoding gene that has the potential to resolve relatively recent, lower level relationships, such as those between populations within a species or between closely related species within a genus (Simon et al., 1994; Su et al., 1998; Yagi, Sasaki & Takebe, 1999; Szalanski et al., 2006; Albre, Gers & Legal, 2008; Dodo et al., 2008). Wingless is a protein-encoding gene in the nuclear genome involved in wing pattern formation and shows a relatively rapid rate of substitution. In Lepidoptera, it has been used successfully for resolving relationships at both higher and lower systematic levels (Brower & Egan, 1997; Brower & DeSalle, 1998; Brower, 2000; Campbell, Brower & Pierce, 2000; Wahlberg, Weingartner & Nylin, 2003).

MOLECULAR TECHNIQUES

Two legs were removed for subsequent extraction of DNA. Voucher specimens are deposited at the following centres: Chris Müller reference collection, Sydney; Australian National Insect Collection, Canberra, Australia; School of Biological Sciences Collection, Macquarie University, Sydney, Australia.

A modified Chelex (Bio-Rad) (Walsh, Metzger & Higuchi, 1991) extraction method yielded the most consistent results. Legs and/or small amounts of body tissue were ground manually in a 1.5-mL microcentrifuge tube and 500 μ L of 5% Chelex resin, and 5 μ L of 20 g L⁻¹ Proteinase K (ProK) (Sigma P2308) enzyme digester were added before vortexing for a few seconds. Samples were incubated at 53 °C overnight and then at 93 °C for 30 min.

Standard polymerase chain reaction (PCR) reactions were conducted in a PTC-100 MJ Research thermocycler, with a total volume of 25 μ L : 2 μ L of gDNA template at various dilutions, with 11.625 μ L of distilled H₂O, 2.5 μ L of buffer (100 mM), 2.5 μ L magnesium chloride, 5 μ L of each dNTP (2.5 mM), 0.5 μ L of each primer and 0.375 μ μ L of Taq polymerase (5 units μ L⁻¹).

For COI, a 654 bp fragment was amplified using Folmer et al. (1994) LCO (5'-GGTCAACAAATCATA AAGATATTGG-3') and HCO (5'-TAAACTTCAGGGT GACCAAAAAATCA-3'). For older and/or degraded tissue samples that could not be amplified using the LCO/HCO pair, internal primers Ron (5'-GGAGCY CCWGATATAGCTTTCCC-3') and Nancy (5'-CCTGG TAAAATTAAAATATAAACTTC-3'), as obtained by Caterino & Sperling (1999), were trialed to amplify two fragments that were concatenated into a 654-bp COI sequence. To amplify the 433-bp wingless gene fragment, the primers LepWG1 (5'-GARTGYAAR TGYCAYGGYATGTCTGG-3') and LepWG2 (5'-ACT ICGCARCACCARTGGAATGTR CA-3') (Brower & DeSalle, 1998) were employed. The primers A1 (5'-AATATDAGGTATAAATCATAT-3') and C2 (5'-ATCY TTWGAATAAAAYCCAGC-3') (Torres et al., 2001) were used in the amplification of 397 bp of ND5.

The cycling protocol used for *COI* comprised: 2 min at 94 °C, five cycles of 1 min at 94 °C, 1.5 min at 45 °C and 1.5 min at 72 °C, followed by 35 cycles of 1 min at 93 °C, 1.5 min at 50 °C and 1.5 min at 72 °C, with a final extension of 2 min at 72 °C. For *ND5*, the protocol was 5 min at 95 °C, 30 cycles of 1 min at 94 °C, 1 min at 45 °C and 2 min at 72 °C, and a final extension of 10 min at 72 °C, whereas, for *wingless*, the thermal cycling protocol was 5 min at 95 °C, followed

by 35 cycles of 0.5 min at 94 °C, 0.5 min at 47 °C and 1.5 mins at 72 °C, with a final extension of 10 min at 72 °C. Negative controls were included in all PCRs. The PCR products were separated by electrophoresis and purified using UltraClean 15 DNA Purification Kit (MO BIO Laboratories Inc.).

All DNA sequencing was performed on an ABI 3130 using the manufacture's protocol. Chromatograms generated from each reaction were edited manually and then aligned in SEQUENCHER, version 4.1. All sequences were aligned against other published Lepidoptera sequences (Brower & DeSalle, 1998; Campbell *et al.*, 2000). For *COI*, the consensus sequences were aligned against the published reference sequence for *Drosophila yakuba* Burla (Clary & Wolstenholme, 1985) and/or various Lepidoptera sequences on GenBank. GenBank accession numbers for all sequences are provided in the Appendix (Table A1).

PHYLOGENETIC ANALYSIS

We assessed individual sequence properties using MEGA, version 4.1 (Tamura et al., 2006). For maximum parsinomy (MP) analysis, phylogenetic trees were reconstructed using unweighted and weighted MP as the optimality criterion, as in PAUP* 4.0.b10 (Swofford, 2002). Tree estimation involved heuristic searches with the tree-bisection-reconnection (TBR) branch-swapping algorithm, stepwise addition with up to 1000 random starts to check for islands of trees, and 'MulTrees' option in effect. Strict consensus trees were computed whenever there was more than one equally parsimonious tree. Bootstrap analyses (Felsenstein, 1985, 1988), based on a full heuristic search of 1000 pseudo-replicates using TBR branch swapping and simple stepwise addition, were carried out for each analysis to determine the level of support of each node. Clade robustness was also evaluated Bremer support (Bremer, 1994) using using TREEROT 3 (Sorenson & Franzosa, 2007). Partitioned support was calculated to assess the contribution of each data partition to the total Bremer support values in the combined analysis.

We performed Bayesian analyses, partitioned by gene fragment (COI, ND5, wingless), using MrBayes, version 3.0b4 (Ronquist & Huelsenbeck, 2003), after analysing the dataset using MODELTEST, version 3.06 (Posada & Crandall, 1998). All partitions were assigned with the GTR+G model. Three independent Bayesian runs at temperature settings in the range 0.2–0.4 were performed on the data using metropoliscoupled Markov chain Monte Carlo simulations, from one to 5 million generations each, and tree sampling every 100 generations. Bayesian topology and branch posterior probabilities were computed by majority rule consensus after deleting the first 1000 000 generations (10 000 trees) as 'burn-in', after confirming that likelihood values had stabilized prior to the 100 000th generation.

Age of divergence estimations

Because there are no known fossils of *Charaxes*, we calibrated our tree by consulting a recent study based on fossil record which estimated the age of the split between *Charaxes* and *Euxanthe* at 22 ± 1.5 Mya (Peña & Wahlberg, 2008). There appear to be no other reliable calibration events because potential markers for the region studied consisted of either widespread, gradual and recurring events (e.g. geo-dynamics, sealevel fluctuations in response to climatic changes) or singular events that were too localized to be useful (e.g. volcanic eruption, impact event). Indeed, tectonic events in the Indo-Pacific during the Tertiary are still poorly known and conjectural and inferred sea levels are highly speculative beyond approximately 100 000 years ago (R. Hall, pers. comm.).

The estimation of divergence times was undertaken using BEAST (Drummond & Rambaut, 2007). The relaxed molecular clock technique was used for the molecular dating, allowing branch lengths to vary according to an uncorrelated Lognormal distribution. The tree prior was set to the Yule process, and the age at the node of the common ancestor of Charaxes and *Euxanthe* was set to 22 ± 1.5 Myr. All other priors were left as defaults in BEAST. We ran a Bayesian analysis twice for 5000 000 generations. We determined whether our parameter estimates and tree topology were at equilibrium using the program TRACER (Drummond & Rambaut, 2007). The first 1000 000 generations were discarded as burn-in. Posterior credibility and error estimates (posterior probability for the nodes, standard error and Bayesian credibility interval for the age estimates) were computed for each internal node estimate.

BIOGEOGRAPHICAL ANALYSIS

We reconstructed the historical biogeography of Indo-Pacific *Charaxes* using a dispersal-vicariance optimization model implemented in DIVA (Ronquist, 1997). The model, unlike the classic vicariance single pattern model, acknowledges the need for some level of dispersal in explaining the occurrence of widespread ancestors. DIVA therefore assigns a cost of one for assumed dispersal and extinction events and a zero for vicariance and speciation events not requiring large-scale geographic distance (within-area speciation). The optimal ancestral reconstruction of the DIVA model is the one with the lowest cost and is thus the most parsimonious. DIVA requires that the

Figure 1. Map showing assigned biogeographic zones used in the dispersal-vicariance analysis of Indo-Pacific *Charaxes*, defined as: Africa (A); South America (B); India and Sri Lanka (C); Indo-China (D), comprising nonpeninsula Thailand, Laos, Cambodia, Vietnam, southern China, and Myanmar; Sundaland (E), encompassing peninsula Thailand, Peninsula Malaysia, Sumatra, Borneo, and Java; Philippines (F), excluding Palawan; Palawan (G); Sulawesi (H); Sulawesi and satellite islands, including Sula Islands, Sangihe, Buton, and Muna Islands; Central Maluku (I); including the main islands of Buru, Seram, and Ambon; Lesser Sunda Islands (J), comprised of all islands between Lombok and Alor, excluding Timor and Wetar; Timor/Wetar (K) and the New Guinea mainland (L). Note that zones (A) and (B) are not shown.

phylogenetic relationship among species is fully resolved. We thus used the Bayesian topology (as derived using BEAST) for this analysis.

Geographical distribution was coded as 12 states, enabling radiation and diversification patterns to be assessed at fine resolution within the Indo-Pacific region, where many of the subject taxa are endemic to particular islands or archipelagos. These states do not necessarily define political boundaries but are unique in their overall biological composition. These zones (states) (Fig. 1) are defined as: Africa (A); South America (B); India and Sri Lanka (C); Indo-China (D), comprising nonpeninsula Thailand, Laos, Cambodia, Vietnam, southern China, and Myanmar; Sundaland (E), encompassing peninsula Thailand, Peninsula Malaysia, Sumatra, Borneo, and Java; Philippines (F), excluding Palawan; Palawan (G); Sulawesi (H); Sulawesi and satellite islands, including Sula Islands, Sangihe, Buton, and Muna Islands; Central Maluku (I); including the main islands of Buru, Seram, and Ambon; Lesser Sunda Islands (J), comprising all islands between Lombok and Alor, excluding Timor and Wetar; Timor/Wetar (K) and the New Guinea mainland and far north Queensland, Australia (L).

RESULTS

DATASET PROPERTIES

The final dataset consisted of 58 taxa, including six outgroups. For certain taxa, we were unable to amplify all of the three gene fragments (see Appendix, Table A1). The complete combined sequence data contained 1456 nucleotides, of which 611 (42.0%) were variable and approximately 383 (26.3%) were parsimony informative. At the individual gene level, *COI* had the highest proportion of parsimony informative sites, with 30.1%, whereas *ND5* had 21.7% and *wingless* 24.2%.

Partitioned Bremer support of the combined dataset under MP revealed a high level of congruence between the three genes for most nodes. The only source of conflict was with the *wingless* gene, and the least with COI. This is in contrast with previous Lepidopteran studies focusing at and above the level of species-group, where COI has been shown to contribute less than nuclear gene fragments (Silvabrandão et al., 2005; Braby, Vila & Pierce, 2006). The causes of this are likely two-fold: the lack of divergence in the *wingless* gene at and below the species level as well as the absence of *wingless* sequences for some taxa in our dataset. Partial lack of congruence with the wingless gene was shown by Silva-brandão et al. (2008) in their study of the nymphalid tribe Acraeini, which included several closely related species of Altinote Potts and Actinote Hübner.

PHYLOGENETIC PATTERNS

Results for the combined MP analysis of the three genes are shown in Figure 2, which represents a strict consensus tree from 43 equally most parsimonious trees derived using unweighted parsimony. The Bayesian analysis (MrBayes: Fig. 3; BEAST: Fig. 4) produced a topology essentially congruent with that generated by MP. There was considerable phylogenetic structure, with the majority of nodes being well resolved. This was likely a result of comprehensive sampling, which reduces phylogenetic error (Zwickl & Hillis, 2002). Inclusive of Euxanthe and Polyura, Charaxes is monophyletic with respect to other selected outgroup taxa. Charaxes solon falls within the African Charaxes clades in the Bayesian analysis and for MP is sister to all remaining Indo-Pacific Charaxes [C. solon + (C. marki + remainder of Indo-Pacific Charaxes)].

All Indo-Pacific Charaxes, with the exception of C. solon, form a well-supported monophyletic group [bootstrap 73% MP, 1.00 Bayesian inference (BI)]. Within the Indo-Pacific Charaxes, eight distinctive clades (elwesi, mars, nitebis, harmodius, amycus, eurialus, latona, and bernardus) were resolved, with invariably high statistical support yielded by both BI and MP analysis. The bernardus clade is sister to the remainder of Indo-Pacific Charaxes, a pairing which is well supported for both MP and BI. For the latter, the monotypic nitebis clade grouped with the bernardus clade. Although most Indo-Pacific clades were characterized by relatively long branches between taxa and moderate-strong statistical node support, the bernardus clade revealed a number of species with very little genetic divergence. The lack of resolution among the basal lineages of the bernardus clade may comprise a hard polytomy (rapid radiation) rather than a soft polytomy in which a lack of data or multiple substitutions (homoplasy) is obscuring the phylogenetic signal.

Age of divergence

Our estimation of divergence times and their credibility intervals, within Charaxes is shown in the chronogram in Figure 4. The analysis revealed that Polyura and Charaxes split in the late Oligocene, approximately 25 Mya. Charaxes diversified in Africa soon after, with the Oriental C. solon splitting from African Charaxes eupale + (Charaxes etesipe + Charaxes nichetes) in the mid Miocene, around 17 mya. At approximately the same time, the other Indo-Pacific Charaxes split from African Charaxes bipunctatus + (Charaxes(Charaxes protoclea + (Charaxes cynthia + Charaxes boueti))). The large bernardus clade separated from the remainder of Indo-Pacific Charaxes during the mid Miocene, at approximately 12 Mya. The peak of radiation in Indo-Pacific Charaxes appears to have been during the mid Miocene to late Pliocene, between 3–13 Mya.

BIOGEOGRAPHICAL ANALYSIS

Based on the DIVA model, using the Bayesian tree derived in BEAST (Fig. 4), both dispersal and vicariance have played importance roles in the diversification of *Charaxes* in the region. Indeed, vicariance appears to have been largely responsible for cladogenesis in Wallacea.

The origins of Indo-Pacific *Charaxes* are conjectural but that of the *bernardus* clade is likely to have been Asian (west of Wallace's Line), whereas that of the remaining Indo-Pacific *Charaxes* is possibly Sulawesi (or at least the ancestral distribution likely included Sulawesi). According to the DIVA model, the majority of subsequent diversification for the latter group was driven by vicariance, as demonstrated by the essentially allopatric radiations. An exception is the inferred dispersal of *C. ocellatus* from its ancestor with *C. orilus*. For the *bernardus* clade, Palawan is suggested as an origin for several taxa occurring in Indo-China, Sundaland, and the remainder of the Philippines.

Splitting between Wallacean taxa, namely those occurring in Sulawesi, central Maluku, the Lesser Sunda Islands, and Timor/Wetar occurred 3.5-13 Mya. Other notable events include the splitting of the Wallacean mars and Sundanian harmodius clade of taxa with Philippine endemics (amycus clade) at approximately 12 Mya, the splitting of the other Wallacean clades (nitebis + (elwesi + (eurialus + affinis))) and Sundanian bernardus clade at around the same time and the divergence of the Wallacean mars and Sundanian harmodius clade at approximately 11 Mya. Within Wallacea, the vicariant split between the Sulawesi mars and Timorese marki was dated at

Figure 2. Strict consensus tree of 43 equally parsimonious trees ((length 1980 steps, consistency index (CI) = 42, retention index (RI) = 55)) for the combined *COI*, *ND5* and *wingless* dataset. Numbers above branches are Bremer support indices for *COI*, *ND5* and *wingless*, respectively, and those below are bootstrap values > 50% for the node to the right. *Calinaga buddha* is outgroup.

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 457-481

Figure 3. Fifty percent majority rule phylogram from the Bayesian analysis of the combined COI, ND5 and wingless dataset. Numbers to the left of nodes are the posterior probabilities of those nodes.

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 457-481

approximately 8 Mya and that between the Buru endemic *Charaxes madensis* Rothschild and *Charaxes eurialus* Cramer, from Seram, at approximately 5 Mya. Sudden diversification of the *bernardus* clade in Oriental/Sundaland occurred at approximately 5 Mya.

DISCUSSION

Systematic implications

The systematics of African Charaxes have been the focus of numerous comprehensive studies over the past few decades and the putative species groups are characterized almost exclusively on the morphology of the adult hind wings (Van Someren, 1975). A molecular study by Aduse-Poku et al. (2009) conformed closely with that of the above mentioned classification. These authors synonymized both *Euxanthe* and Polyura with Charaxes. The systematics of Polyura and Euxanthe were covered by Smiles (1982) and Smiles (1985), respectively. Conversely, the systematics of Indo-Pacific Charaxes, as a group, remain essentially unknown, despite being amongst the most popular insects in the region. A new classification is proposed herein, based on phylogenetic relationships. Although morphological characters were not used as part of this analysis, broad correlations between phylogenetic groupings, genetic divergence and phenotype are obvious (Fig. 2; see Appendix, Table A2).

Eight distinctive clades, representing all Indo-Pacific Charaxes except C. solon, were resolved, all of which are endemic to the region. Charaxes solon was one of three Indo-Pacific Charaxes used in the dataset of Aduse-Poku et al. (2009), which also included Charaxes marmax and C. bernardus. Charaxes solon was recovered as a sister to various African Charaxes in the present study and as an immediate sister to the monotypic *Charaxes* subgroup *jahlusa* in the study by Aduse-Poku et al. (2009). The latter study, however, retained C. solon in its own species group. The remaining clades/species groups (elwesi, harmodius, amycus, mars, eurialus, latona, nitebis, bernardus) form a monophyletic group and their specific compositions are outlined in the Appendix (Table A2). As well as genetic affinity, the majority of these groupings are in accordance with morphological similarities, especially wing pattern and colour. In particular, high genetic and phenotypic divergence is evident in the former seven above-mentioned clades, whereas the currently recognized 12 species in the *bernardus* species group are essentially of similar morphotype (orange-brown uppersides, with similarly patterned undersides) and show generally low to negligible pairwise sequence divergence between species. For example, COI pairwise divergence between sympatric, sibling Bornean

C. bernardus and Charaxes borneensis does not exceed 1.4%, whereas, for sister species C. orilus and C. ocellatus, the difference is 3.5% for the same gene.

Charaxes solon represents an early lineage which has diversified into two main sub-lineages, one of which occurs in South-East Asia and Sundaland, and the other in Sulawesi and the Philippines. Strong phenotypic similarities are exemplified by genetic differentiation.

We sampled three specimens of typical 'marmax' and three 'aristogiton' for COI in the present study and revealed no consistent sequence differentiation. We also found, from an examination of long series in the Natural History Museum (London) and Naturalis Museum (Leiden), that the diagnostic characters of C. marmax and Charaxes aristogiton proposed in various studies (Pinratana & Eliot, 1996) were highly variable, with numerous intergrades. Such characters assessed included the extent of the fore and hind wing upperside black apical and terminal region, the fused (or nonfused) state of the hind wing apical spots, the underside ground colour, and intensity of the hind wing underside postmedian band. Indeed, the distributions of the two taxa in Indo-China are remarkably parallel, with nominate marmax and aristogiton occurring in Sikkim and Assam to Myanmar, Thailand, Laos, whereas Charaxes marmax philopator Fruhstorfer and Charaxes aristogiton peridoneus Fruhstorfer co-occur in Vietnam. For the above reasons, we suggest that C. aristogiton be regarded as a junior synonym of C. marmax.

We found evidence for a well-supported sister relationship (MP = 95%) between the sympatric *Charaxes bupalus* and *Charaxes plateni*, both of which are endemic to Palawan. This is intriguing because the former taxon shows a superficial resemblance to *C. borneensis*, which is widespread in Sundaland. Indeed, D'Abrera (1985) combined *C. bupalus* as a subspecies of *C. borneensis*.

The nonmonophyly of *C. bernardus* with respect to other *Charaxes* taxa in the *bernardus* clade may be attributed to high variation in the *COI* gene fragment, with generally low pairwise divergence between members of this group. *Charaxes bernardus* may possibly represent a taxon which is currently undergoing diversification, corroborated by the numerous localized forms of this insect and the overall high morphological variation of adults. One exception is noted below, where a distinctive taxon, until recently referred to as the Bornean race of *C. bernardus*, is herein separated, based on phenotypic and genetic differences (see Appendix, Table A3).

HISTORICAL BIOGEOGRAPHY AND DIVERSIFICATION

Charaxes was shown by Aduse-Poku *et al.* (2009) to have originated in Africa and the same study reported

estimated times of divergence between the African and the Asian (*solon* and *bernardus*) *Charaxes* species groups in the range 13–17 Mya, which agrees quite closely with our own estimate of the divergence between African (including *solon* clade) and Indo-Pacific *Charaxes* at approximately 18 Mya.

The zoogeographical distributions of each Indo-Pacific Charaxes species were mapped on our phylogeny to produce a taxon-area cladogram (Fig. 4). The Indo-Pacific C. solon clearly nests within African Charaxes, where it is sister to clades (C. eupale +(C. etesipe + C. nichetes) and (Charaxes porthos + Charaxes zingha). All remaining Indo-Pacific Charaxes clades are distributed in either Wallacea (mars, nitebis, elwesi, eurialus, and latona clades), the Philippines (amycus clade) or the Oriental region (bernardus and harmodius clades), with almost no overlapping of taxa between the three regions. The exceptions are the widespread C. solon and also C. elwesi, C. bernardus, and Charaxes harmodius on the island of Bali, which itself is both part of Sundaland and the Lesser Sunda Islands. A single species. C. latona also occurs to the east of Wallacea, in Maluku, New Guinea, and far northern Queensland. Within Indo-Pacific Charaxes, speciation events between Wallacean taxa are notably older than those between species in the Oriental region and the Philippines, and longer branches indicate extended isolation of Wallacean *Charaxes*. Such a pattern was also recorded for other groups of butterflies co-occurring in Wallacea (C. Müller & L. B. Beheregaray, unpubl. data).

The identification/postulation of old Wallacean lineages in the genus Charaxes is intriguing. Although few studies appear to have recognized the temporal importance of Wallacea for the evolution of butterflies in the region, Vane-Wright & de Jong (2003) implied in their reproduced phylogenies of various Indo-Pacific genera that certain endemic Sulawesi taxa represented basal lineages, suggesting 'a relatively ancient element among the Sulawesi butterflies' (Vane-Wright & de Jong, 2003: 29). Additionally, de Boer (1995), in his reconstructed phylogenies of Indo-Pacific cicadas, showed that genera and tribes endemic to Sulawesi were essentially of basal, ancient lineages. Indeed, in their area cladogram, they linked 'SE Asia' with Sulawesi (i.e. an ancient affinity). However, they did not provide any estimation of divergence times. Sulawesi is the largest island in Wallacea and its fauna have also been the subject of most biogeograpical studies pertaining to Wallacea (Van Balgooy, 1987; Vane-Wright, 1990).

Although we were unable to determine the origin of the Wallacean clades, it is clear that the Wallacean lineages are old, relative to the Sundanian *bernardus* clade, comprising all Indo-Pacific *Charaxes* that occur to the west of Wallace's Line. Vane-Wright & de Jong (2003) inferred that both faunal and cladistic analysis point to a Sulawesi butterfly fauna of mainly Asian (Sundaland) origin, with no special relationship with Borneo. Vane-Wright & de Jong (2003) postulated that low generic endemism, coupled with the high levels of species endemism, suggests a long but not excessive period of evolution in isolation, probably 'seeded' in geological West Sulawesi by species derived from Asia and Sundaland. Vane-Wright & de Jong (2003) also suggested that, subsequent to the collision of the Asian and Australian plates bringing east and west Sulawesi together, continuing faunal exchange has mainly been a one-way route, into Sulawesi.

GEOLOGICAL VICARIANCE

Phylogenetic patterns within *Charaxes*, in conjunction with the DIVA analysis, imply that geological processes have lead to the vicariant diversification and speciation of several Indo-Pacific clades and the species they comprise. Broadly, three primary vicariant events that are likely attributable to geological processes are recognized, namely: (i) the allopatric diversification of five Wallacean clades (nitebis, latona, mars, elwesi, eurialus) from a common ancestor; (ii) separation of the Philippine endemics in the *amycus* clade from the *mars* and *harmodius* clades; and (iii) formation of a cluster of sibling species within the bernardus clade, with ranges in either Indo-China or south-east Asia (essentially Sundaland), separated by the Isthmus of Kra in Peninsula Thailand.

During the early Miocene, approximately 25 Mya, the Philippine Sea Plate began to rotate clockwise and ultimately resulted in the accretion of fragments (micro-continents) from the northern Australian margin into the south-east Asian margin, notably in Sulawesi (Hall, 1996, 2002, 2009). The Wallacean fragments were likely shifted after being sliced from their original continental block along the Yapen-Sorong Fault Zone (or similar palaeo-faults), a major fault extending east to west from northern Irian Jaya to Sulawesi (Hamilton, 1979; Letouzey et al., 1983; Dow & Sukamto, 1984; McCaffrey & Abers, 1991; Charlton, 1996; Kreemer et al., 2000), after its inception during Oligocene to Middle Pliocene time (Lee & Lawver, 1995; Charlton, 1996; Hall, 1996; Packham, 1996; Hall & Wilson, 2000). On the basis of stratigraphic similarities, Villeneuve et al. (1998, 2001) proposed that several Wallacean micro-fragments constituted a single continental fragment, named the 'Kolonodale block', which collided with Sulawesi during Late Oligocene-Early Miocene time. A further fragment, the 'Lucipara' block, distinct from the Kolonodale Block (Villeneuve *et al.*, 1998; Cornée *et al.*, 2002), collided during the Middle Miocene (Smith & Silver, 1991; Honthaas *et al.*, 1997; Villeneuve *et al.*, 1998). Finally, the Banggai Sula microcontinent has been colliding with north-east Sulawesi subsequent to Late Miocene–Early Pliocene time (Davies, 1990; Villeneuve *et al.*, 2000, 2001). A 'Banda' micro-continent may have been an amalgamation of these blocks during the Miocene (F. Hinschberger, pers. comm.) and possibly harboured the ancestor of Wallacean *Charaxes*.

At the time (middle Miocene, 15 Mya) these Australian continental crust (Wallacean) fragments began colliding with West Sulawesi, subduction at the Banda Trench was initiated and subsequently lead to back-arc spreading and the inception of the Banda Basins (Banda Sea) (Réhault et al., 1994; Honthaas et al., 1998; Hinschberger et al., 2000; Hinschberger et al., 2005), as a consequence of rollback of the Java Trench subduction hinge (Hall, 2009). Geochemical, petrological, and geophysical data (namely magnetic lineation data) support an age of 7-12.5 Mya and 3.5-6.5 Mya, respectively, for the north west-south east opening of the North and South Banda basins (Réhault et al., 1994: Honthaas et al., 1998: Hinschberger et al., 2000, 2001, 2005). The active spreading stopped during Middle Pliocene time in response to the collision between the Australian continent and the Banda Arc dated at approximately 3 Mya (Carter, Audley-Charles & Barber, 1976; Hamilton, 1979; Bowin et al., 1980; Abbott & Chamalaun, 1981; Audlev-Charles, Ballantvne & Hall, 1988; Richardson & Blundell, 1996). Such back-arc spreading and fragmentation of an early micro-continent has essentially generated Wallacea and additionally has probably shaped the biogeographic patterns that we see today in Wallacean Charaxes. Back-arc spreading at approximately 13 Mya coincides with the initial divergence of the Wallacean clade, which progressively diversified as the Banda microcontinent was dismembered, leading to the subsequent vicariant splitting of Sulawesi/Timor respective endemics C. mars and C. marki, as well as C. eurialus and C. madensis in Buru/Seram.

The sister relationship of *C. mars* (Sulawesi) and *C. marki* (Timor) (as demonstrated under BI) is congruent with that between *Cethosia myrina* Felder (Sulawesi) and *Cethosia leschenault* Godart (Timor) in a phylogenetic study (C. Müller & L. B. Beheregaray, unpubl. data). Such a Sulawesi–Timor connection was recognized in an assessment of the *Parantica tityoides* group (Ackery & Vane-Wright, 1984), although the correlation could not be explained. Müller & Beheregaray (unpubl. data) suggested that both Sulawesi and part of Timor were part of a micro-continent during the Miocene and their separation lead to the

allopatric evolution of the fore-mentioned taxa. Timor is a fused composite, comprising mostly Australian Plate margin but the upper nappes are 'Asian' (R. Hall, pers. comm.; F. Hinschberger, pers. comm.). The Timorese fossil mammal, *Anthracothema verhoeveni* Von Koenigswald belongs to a genus otherwise known from mainland Asia (Von Koenigswald, 1967). The above-mentioned fossil is from Mota Bour, within the Bobonaro Complex, which is the type, and so far unique, locality for *Charaxes marki*.

The occurrence of the *amycus* clade of Philippine endemics raises questions regarding their origin. which, according to our DIVA analysis, was the result of a vicariant event. In all our analyses, this clade nested within the Wallacean clade as a relatively early lineage, implying a relatively early connection between Wallacea and the Philippines. The Philippines have been connected, via island arcs, to both Sundaland (Borneo) and Sulawesi at various times during the late Tertiary. Moss & Wilson (1998) implied that island-hopping routes between Borneo, the Philippines, and Sulawesi included the Sulu, Sangihe, and Cagayan arcs. Inger (1954) considered that there were two periods during the Tertiary, when faunal exchange between Sulawesi and the Philippines may have been possible: in the late Miocene when the south-eastern portion of the Philippines were relatively close to the north-eastern part of Sulawesi and during the Pliocene when a chain of volcanoes (the Sangihe arc) extended northward from Sulawesi towards the Philippines (Hall, 1998). The Sangihe Arc is long-lived and is likely to have been a link between the Philippines and Wallacea (Sulawesi) intermittently during the Cenozoic. However, the Philippines proper shares the overwhelming majority of its butterfly genera with the Malay Peninsula and the Greater Sunda Islands. The major exception involves a few small genera shared exclusively with Sulawesi (Vane-Wright, 1990). There is a much higher species level affiliation between Sulawesi and the Moluccas (i.e. the Wallacean connection). Sulawesi has 200 endemic butterflies out of a total of approximately 460, but shares only two butterfly species exclusively with Borneo and only eight exclusively with the Philippines (R. Vane-Wright, pers. comm.).

The Isthmus of Kra represents a significant range divide within the *bernardus* clade of *Charaxes*, with *C. marmax*, *C. aristogiton*, and *Charaxes kahruba* restricted to the north (Indo-China), whereas *C. borneensis* and *Charaxes durnfordi* occur south of the boundary (Sundaland). The widespread *C. bernardus* occupies both Indo-China and Sundaland. The Isthmus of Kra has long been considered a floral and avifaunal biogeographic transition zone between two areas of endemism (Wells, 1976; Hughes, Round & Woodruff, 2003; Woodruff, 2003). Essentially, this boundary separates Sundaic species from Indo-Chinese. Current hypotheses propose that climatic changes as well as geological influences (such as a marine seaway across the isthmus most recently during the early Pliocene) account for this pattern (Hughes et al., 2003; Woodruff, 2003; Reddy, 2008). Palaeomagnetic data indicates Post-Cretaceous clockwise rotations in Thailand and northern Malaysia (Schmidtke, Fuller & Haston, 1990; Fuller et al., 1991) whereas counter-clockwise rotations (Mcelhinny, Haile & Crawford, 1974; Haile et al., 1983; Schmidtke et al., 1990; Fuller et al., 1991) are reported from Tertiary and older rocks further south. Therefore, it is evident that a north Malava block has been separated from a south Malava block at the Khlong Marui fault, within the Isthmus of Kra.

CLIMATIC VICARIANCE

DIVA analysis in the present study revealed several vicariant speciation events that are likely a reflection of climate dynamics, rather than geological events, because they span areas of relative tectonic stability and the events are distinctly young (Pliocene and Pleistocene). For *Charaxes* in the Indo-Pacific, the Pliocene marked a period of peak diversification within the *bernardus* clade, particularly in Sundaland. The most prominent response to climate change in the past has likely been sea level fluctuation.

The evolution of the *bernardus* clade at the species level appears to have been largely vicariant in nature, although several species are parapatric/sympatric in distribution and therefore, for such species, no inferences can be made from the area cladogram (Fig. 4). The Palawan endemic sister species pair, C. bupalus Honrath and C. plateni Staudinger, may also have been isolated from the remainder of Sundaland but, in this case, this pair form an early lineage with respect to the tight clade of closely related Sundaic species in the *bernardus* clade. We consider that the splitting of the three Philippine endemic Charaxes within the amycus clade may have been climate induced because they are generally all lowland species and their ranges are partly overlapping (with the exception of Charaxes sangana). Although not assessed in this work, fine-scale subspecific evolution in Charaxes has undoubtedly been promoted by climate fluctuations, in both the bernardus clade species in Sundaland, as well as C. ocellatus and C. elwesi in the Lesser Sunda Islands, where these islands were connected and fragmented repeatedly during the Pleistocene.

Although the broad-scale consensus in many biogeographical assessments is pronounced Pleistocene sealevel fluctuations promoting explosive diversification, much earlier significant sea level changes have been recorded. Monk, De Fretes & Reksodiharjo-Lilley (1997) stated that Indonesia experienced several major falls in sea level during the late Oligocene and Pliocene. Of these lowering sea levels, at least the last one in the Pleistocene Period was well known to connect islands of the Great Sundas with an extension to Southeast Asia, whereas most of the others appear to have let Borneo remain isolated resulting in high endemicity on that island (Natus, 2005). Hutchison (1989) considered that the Sunda platform was for the largest part above sea level. Conversely, the same study suggested that, several times during the late Tertiary, the sea levels were much higher than present, which would ultimately have increased the separation of the Greater Sunda Islands, comprising Sundaland (Hutchison, 1992). Several studies have suggested that the well-documented Pleistocene sea-level fluctuations promoted vicariant speciation (Corbet, 1946; Buch, 1994), as opposed to host plant co-evolution (Maschwitz et al., 1984; Farrell, 1998). However, as with our Charaxes dataset, more examples have recently arisen which imply that the Pliocene period was temporally more important than the Pleistocene (Klicka & Zink, 1997; Ward, 1999; Hewitt, 2000; Moritz et al., 2000; Taberlet & Cheddadi, 2002; Gorog, Sinaga & Engstrom, 2004; Jiggins et al., 2006) Indeed, the Pliocene was a time of peak diversification among African Charaxes (Aduse-Poku et al., 2009).

DISPERSAL

Our DIVA analysis revealed several examples of dispersal in Charaxes, as both early and more recent divergences. One of the most important is the split of the Oriental monotypic solon clade from an otherwise African clade in the mid Miocene, approximately 17 Mya. This coincides remarkably well with the split of all other Indo-Pacific Charaxes from African stock. Such colonization in the east, from African ancestors, can be explained as a combination of dispersal and vicariance through fragmentation by climate dynamics. Interestingly, land connection between the Africa and Asia is considered to have formed at this time, during the mid Miocene (Willis & McElwain, 2002). It is therefore most likely that some descendents of the African Charaxes colonized Asia across the Arabian Peninsula, as also proposed for the nymphalid genus Junonia (Kodandaramaiah & Wahlberg, 2007). Contraction of tropical forest into isolated fragment subsequent to an intense cooler and drier climate in the mid and late Miocene perhaps caused a permanent isolation in the populations in Africa and Asia. Conditions between forests refugia in these continents might have been both harsh and persisted long enough to have created allopatric sister species. In this regard, the divergence can be attributed to initial dispersal (colonization), followed by vicariance.

Colonization of Wallacea by Charaxes is likely to have been through either the Philippines or via dispersal from Sundaland. The Makassar Straits separated Borneo and Sulawesi as early as 42 Mya (mid Eocene), well before the origins of even ancestral Indo-Pacific Charaxes. Indeed, O[h]tsuka (1996) concluded that there is almost no influence of Sulawesi on the butterflies of Borneo. The presence of Pliocene 'Asian' stegodont fossils in Sulawesi is almost certainly attributed to dispersal because elephants have been shown to swim long distances (R. Hall, pers. comm.). Conversely, influx from the Philippines may have been either dispersal (via island hopping) or vicariant (when the fore-mentioned volcanic arcs were eroded, enlarging the sea barriers). On the basis of the total absence of species of freshwater fish in Sulawesi other than those likely to have been introduced by humans, Cranbrook (1981) concluded that there has been no direct, unbroken connection between Sulawesi and the principle landmass of the Sunda shelf.

Palawan represents a pivotal point between Sundaland and the Philippines and, in a biogeographic sense, has been interpreted in a number of ways. It is particularly interesting in our DIVA analysis because the bernardus clade, with the exception of C. durnfordi and Charaxes psaphon, are shown to have dispersed from a Palawan ancestor, owing to the phylogenetic position of the Palawan endemics C. bupalus and C. plateni. Such colonization by various organisms from Palawan has been recorded by other workers (Inger, 1954; Brown & Alcala, 1955; Alcala & Brown, 1998). Vicariance may be arguably more responsible for the connection between Palawan and the Philippines (possibly Mindoro), as suggested by our DIVA analysis of the amycus clade of Indo-Pacific Charaxes. The possibility that a land bridge (Hall, 1998) existed between northern Palawan and southern Mindoro is consistent with some geological evidence (Rangin, Stephan & Müller, 1985). Palawan is not at all the simple extension of north Borneo (or the Sunda Shelf) as the prevailing zoogeographical perspective would suggest (Widmann, 1998; Kennedy et al., 2000). The presence of two endemic Charaxes (i.e. C. bupalus and C. plateni) attests to this.

Within Wallacea, almost all of the splitting events as revealed by our DIVA analysis indicate that vicariance has shaped very clear, largely allopatric patterns of diversification. Only one node was shown to be the result of dispersal, being the colonization of the Lesser Sundas by what is now *C. elwesi* from a common ancestor with *C. orilus* in Timor/Wetar, during the Pliocene at approximately 3.6 Mya. This speciation event coincides closely with the time that the Australian margin collided with the Banda Arc and the generation of some of the more easterly islands of the Lesser Sundas close to Timor, where the distance would have been reduced to less than one hundred kilometres between the two biogeographic zones.

The only example of radiation away from Wallacea is that of C. latona, which occurs marginally within Wallacea (Sula Islands) and throughout northern Maluku and New Guinea, to the east. Indeed, C. latona is the only species in the genus that occurs to the east of Wallacea. Diversification above species level east of Wallacea has been inhibited by the lack of sea barriers, maintaining genetic flow between various populations of C. latona, as well as a lack of time for genetic drift to manifest between such populations. Probably, C. latona entered northern Maluku via Obi as this island was pushed east via strike-slip faulting along the Sorong Fault, from the late Miocene/early Pliocene to recent times. During the early stages of its migration, Obi was likely juxtaposed with Taliabu Island and other islands in the Sula group. Whether C. latona diverged from the Sulawesi endemic Charaxes affinis as a result of vicariance (the splitting of Obi from the 'Banda' microcontinent) or by dispersal along the narrow bridge between Sulawesi and the Sula Islands is unknown because C. latona is not monophyletic with respect to C. affinis in our analyses. C. latona then likely dispersed throughout New Guinea once land connections with Maluku were established. It is very unlikely that C. latona originated in New Guinea and spread westward into Wallacea to the Sula Islands. Some studies (Michaux, 1994; Moss & Wilson, 1998) have suggested that the motion of the Sula block acted as a raft, carrying New Guinea biota to Sulawesi. However, the Sula block was likely submerged during its mobilization from New Guinea. Indeed, the butterfly fauna of the Sula Islands is strictly of Sulawesi affinity and a biodiversity assessment at all altitudes of that island revealed only endemics that have relatives in the latter biogeographic zone (Müller, 2004).

CONCLUSIONS

Phylogenetic relationships within Indo-Pacific *Charaxes* recognize eight distinct lineages that show significant concordance between morphology and genotype. Biogeographical analysis of the genus has provided an insight into the history of the region and the processes that have shaped the evolution of these groups.

After the genus originated in Africa, patterns of radiation and diversification may be directly correlatated with inferred tectonic and climatic events that spanned the late Tertiary. During the early Miocene, approximately 17 Mya, both the *solon* clade and the ancestor of all remaining Indo-Pacific *Charaxes* separated from their African ancestors, likely the *jahlusa* and *candiope* clades, respectively. Such colonization was probably through dispersal via the Arabian Peninsula and was terminated as a result of vicariance following the fragmentation of suitable forested habitat.

The earliest lineage among Indo-Pacific Charaxes (excepting C. solon) appears to have diverged subsequent to the initial fragmentation of the 'Banda' micro-continent during the mid Miocene, approximately 13 Mya, as a result of complex back-arc spreading in the Flores Basin and later the Banda Sea Basins. Shortly afterwards, at approximately 12.5 Mya, the large bernardus clade separated from the remainder of Indo-Pacific Charaxes. Diversification in the *bernardus* group was predominantly controlled by climatic changes during the Pliocene and possibly as recently as the Pleistocene, particularly affecting lineages in Sundaland (Greater Sunda Islands) as well as those separated by the Isthmus of Kra. The peak of divergence among Indo-Pacific Charaxes appears to be of mid Miocene to late Pliocene age, from approximately 3-13 Mya. Speciation events between Wallacean taxa are notably older than those between species in the Oriental region and the Philippines, indicating extended isolation of Charaxes lineages in Wallacea.

As corroborated by the high levels of local endemism in the genus, inter-island dispersal has been a relatively infrequent, stochastic event. Conversely, vicariance, through geological and climatic processes, has been largely responsible for the diversification of *Charaxes* in the Indo-Pacific, most notably in Wallacea. Sea separating the aerial fragments acted as a powerful barrier to dispersal and is ever-present today. For these reasons, there is no overlapping of the clades between either Wallacea (*mars, nitebis, elwesi, eurialus,* and *latona* clades), the Philippines (*amycus* clade) or the Oriental region (*bernardus* and *harmodius* clades), with the exception of the widespread *C. solon* and partial overlap of the *bernardus* and *elwesi* clades on the island of Bali.

Wallacea remains a diversity hotspot and its conservation is of paramount importance. Patterns and theories elucidated from this study of Indo-Pacific *Charaxes* agree with our analysis of *Cethosia* and are models for future Indo-Pacific biogeographic studies.

ACKNOWLEDGEMENTS

Numerous friends, colleagues and collaborators have made this work possible. While most specimens were collected by one of us (C.J.M.) in the field, certain others were kindly provided by Andreas Müller, Andrew Rawlins and Colin Treadaway (Trig). We thank Felix Sperling, Rod Eastwood, and Michael Braby for helpful comments and discussion, as well as Thomas Simonsen for critically reviewing the manuscript. John Tennent kindly sought and provided several obscure references, as well as located type specimens held in the Natural History Museum, London. Blanca Huertas, Behnaz van Bekkum-Ansari, and Djunijanti Peggie of the Natural History Museum, Museum Naturalis (Leiden) and Museum Bogoriense (Bogor), respectively, kindly allowed examination of specimens in their care. The authors are grateful to both Robert Hall and Florent Hinschberger for expert advice on Indo-Pacific tectonics. This work was supported by a grant from Macquarie University, Sydney, as well as (in part) a grant to N.W. from the Academy of Finland (grant number 118369).

REFERENCES

- Abbott MJ, Chamalaun FH. 1981. Geochronology of some Banda Arc volcanics. In: Barber AJ, Wiryosujono S, eds. *The geology and tectonics of eastern indonesia*. Indonesian Geological Research and Development Center, Bandung, Special Publications 2, 253–268.
- Ackery PR, Vane-Wright RI. 1984. *Milkweed butterflies*. New York, NY: Cornell University Press.
- Aduse-Poku K, Vingerhoedt E, Wahlberg N. 2009. Outof-Africa again: A phylogenetic hypothesis of the genus *Charaxes* (Lepidoptera: Nymphalidae) based on 5 gene regions. *Molecular Phylogenetics and Evolution* 53: 463– 478.
- Albre J, Gers C, Legal L. 2008. Molecular phylogeny of the Erebia tyndarus (Lepidoptera, Rhopalocera, Nymphalidae, Satyrinae) species group combining CoxII and ND5 mitochondrial genes: A case study of a recent radiation. Molecular Phylogenetics and Evolution 47: 196–210.
- Alcala AC, Brown WC. 1998. Philippine amphibians: an illustrated field guide. Makati City: Bookmark Inc.
- Audley-Charles MG, Ballantyne PD, Hall R. 1988. Mesozoic–Cenozoic rift–drift sequence of Asian fragments from Gondwanaland. *Tectonophysics* 155: 317–330.
- Austin CS. 1999. Lizards took express train to Polynesia. Nature 397: 113–114.
- **Beheregaray LB. 2008.** Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. *Molecular Ecology* **17**: 3754–3774.
- Berlocher SH, Feder JL. 2002. Sympatric speciation in phytophagous insects: moving beyond controversy? *Annual Review of Entomology* 47: 773–815.
- Bowin C, Purdy GM, Johnston C, Shor G, Lawver L, Hartono HMS, Jezek P. 1980. Arc-continent collision in Banda Sea region. *American Association of Petroleum Geolo*gists Bulletin 64: 868–915.
- **Braby MF, Pierce NE. 2007.** Systematics, biogeography and diversification of the Indo-Australian genus *Delias* Hübner (Lepidoptera: Pieridae): phylogenetic evidence supports an 'out-of-Australia' origin. *Systematic Entomology* **32**: 2–25.

- Braby MF, Vila R, Pierce NE. 2006. Molecular phylogeny and systematics of the Pieridae (Lepidoptera : Papilionoidea): higher classification and biogeography. *Zoological Journal of the Linnean Society* 147: 239–275.
- Bremer K. 1994. Branch support and tree stability. *Cladistics* 10: 295–304.
- **Brower AVZ. 2000.** Phylogenetic relationships among the Nymphalidae (Lepidoptera) inferred from partial sequences of the wingless gene. *Proceedings of the Royal Society of London Series B, Biological Sciences* **267:** 1201–1211.
- **Brower AVZ, DeSalle R. 1998.** Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference. *Insect Molecular Biology* **7**: 73–82.
- Brower AVZ, Egan MG. 1997. Cladistic analysis of Heliconius butterflies and relatives (Nymphalidae: Heliconiiti): a revised phylogenetic position for Eueides based on sequences from mtDNA and nuclear gene. Proceedings of the Royal Society of London Series B, Biological Sciences 264: 969–977.
- Brown WC, Alcala AC. 1955. Observations on amphibians of Mount Halcon and Mount Canlaon areas, Philippine Islands. Silliman Journal 2: 93–105.
- Brown JrKS, Freitas AVL, Wahlberg N, von Schoultz B, Saura AO, Saura A. 2007. Chromosomal evolution in the South American Nymphalidae. *Hereditas* 144: 137–148.
- **Brown RM, Guttman SI. 2002.** Phylogenetic systematics of the *Rana signata* complex of Philippine and Bornean stream frogs: reconsideration of Huxley's modification of Wallace's Line at the Oriental-Australian faunal zone interface. *Biological Journal of the Linnean Society* **76:** 393–461.
- Buch M. 1994. Amazonian speciation: a necessarily complex model. Journal of Biogeography 21: 5–17.
- Butler AG. 1896. An account of the butterflies of the genus *Charaxes*, in the collection of the British Museum. *Journal of the Linnean Society of London (Zoology)* 25: 348–404.
- Campbell DL, Brower AVZ, Pierce NE. 2000. Molecular evolution of the Wingless gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: Papilionoidea). *Molecular Biology and Evolution* 17: 684–696.
- Cannon CH, Manos PS. 2003. Phylogeography of the Southeast Asian stone oaks (*Lithocarpus*). Journal of Biogeography 30: 211–226.
- Carter DJ, Audley-Charles MG, Barber AJ. 1976. Stratigraphical analysis of island arc-continental margin collision in eastern Indonesia. *Journal of the Geological Society* (London) 132: 179–198.
- Caterino MS, Cho S, Sperling FAH. 2000. The current state of insect molecular systematics: a thriving tower of babel. *Annual Review of Entomology* **45**: 1–54.
- Caterino MS, Sperling FAH. 1999. *Papilio* phylogeny based on mitochondrial cytochrome oxidase I and II genes. *Molecular Phylogenetics and Evolution* 11: 122–137.
- Charlton TR. 1996. Correlation of the Salawati and Tomori Basins, eastern Indonesia: a constraint on left-lateral dis-

placements of the Sorong fault zone. In: Hall R, Blundell DJ, eds. *Tectonic evolution of southeast Asia*. London: Geological Society of London Special Publications 106, 465–481.

- Clary DO, Wolstenholme DR. 1985. The mitochondrial DNA molecule of *Drosophila yakuba*: nucleotide sequence, gene organization, and genetic code. *Journal of Molecular Evolution* 22: 252–271.
- Corbet SA. 1946. Observations on the Indo-Malayan species of the genus Arhopala Boisduval (Lepidoptera: Lycaenidae). Transactions of the Royal Entomological Society of London 96: 73–88.
- Cornée JJ, Villeneuve M, Ferrandini M, Hinschberger F, Malod JA, Matsumaru K, Ribaud-Laurenti A, Réhault JP. 2002. Oligocene reefal deposits in the Pisang Ridge and the origin of the Lucipara Block (Banda Sea, eastern Indonesia). Geo-Marine Letters 22: 66-74.
- Cranbrook Earl of. 1981. The vertebrate faunas. In: Whitmore TC, ed. Wallace's line and plate tectonics. Oxford: Clarendon Press, 57–69.
- D'Abrera B. 1985. Butterflies of the Oriental Region. Part 2 Nymphalidae, Satyridae, Amathusidae. Black Rock, Melbourne: Hill House.
- Davies IC. 1990. Geological and exploration review of the Tomori PSC, eastern Indonesia. Proceedings Indonesian Petroleum Association 19th Annual Convention 1990: 41-67.
- **De Boer AJ. 1995.** Islands and cicadas adrift in the West-Pacific, biogeographic patterns related to plate tectonics. *Tijdschrift voor Entomologie* **138:** 169–244.
- de Bruyn M, Wilson JA, Mather PB. 2004. Huxley's line demarcates extensive genetic divergence between eastern and western forms of the giant freshwater prawn, Macrobrachium rosenbergii. Molecular Phylogenetics and Evolution 30: 251–257.
- Dickerson RE. 1928. Distribution of life in the Philippines. Monographs of the Bureau of Science, Manila, Philippine Islands. *Monograph* 21: 101–303.
- Dodo YT, Saigusa T, Chiba H, Nishiyama T, Hirowatari T, Ishii M, Yagi T, Hasebe M, Mohri H. 2008. Molecular phylogeny of Japanese skippers (Lepidoptera, Hesperiidae) based on mitochondrial ND5 and COI gene sequences. *Transactions of the Lepidopterological Society of Japan* 59: 29–41.
- Dow DB, Sukamto R. 1984. Western Irian Jaya: the endproduct of oblique plate convergence in the Late Tertiary. *Tectonophysics* 106: 109–139.
- Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. *BMC Evolutionary Biology* 7: 214.
- Farrell BD. 1998. Inordinate fondness explained: why are there so many beetles? *Science* 281: 555–559.
- Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the boot strap. *Evolution* **39**: 783–791.
- Felsenstein J. 1988. Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics 22: 521–565.
- Folmer O, Black MB, Hoch W, Lutz RA, Vrijehock RC. 1994. DNA primers for amplification of mitochondrial c

oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology **3:** 294–299.

- Fuller M, Haston R, Lin J-L, Richter B, Schmidtke E, Almasco J. 1991. Tertiary palaeomagnetism of regions around the South China Sea. *Journal of Southeast Asian Earth Sciences* 6: 161–184.
- Gorog AJ, Sinaga MH, Engstrom MD. 2004. Vicariance or dispersal? Historical biogeography of three Sunda shelf murine rodents (*Maxomys surifer*, *Leopoldamys sabanus* and *Maxomys whiteheadi*). Biological Journal of the Linnean Society 81: 91–109.
- Haile NS, Beckinsdale RD, Chakraborty KR, Hussein AH, Hardjono T. 1983. Palaeomagnetism, geochronology and petrology of the dolerite dykes and basaltic flows from Kuantan, west Malaysia. Bulletin of the Geological Society of Malaysia 16: 71–85.
- Hall R. 1996. Reconstructing Cenozoic SE Asia. In: Hall R, Blundell DJ, eds. *Tectonic evolution of southeast Asia*. London: Geological Society, Special Publications 106, 153– 184.
- Hall R. 1998. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In: Hall R, Holloway JD, eds. *Biogeography and geological evolution of SE Asia*. Leiden: Backhuys Publishers, 99–131.
- Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. *Journal of Asian Earth Sci*ences 20: 353–431.
- Hall R. 2009. Southeast Asia's changing palaeogeography. Blumea – Biodiversity, Evolution and Biogeography of Plants 54: 148–161.
- Hall R, Wilson MEJ. 2000. Neogene sutures in eastern Indonesia. Journal of Asian Earth Sciences 18: 787–814.
- Hamilton W. 1979. Tectonics of the Indonesian region. United States Geological Survey professional paper 1078: 1–345.
- **Henning SF. 1989.** *The Charaxinae butterflies of Africa.* Johannesburg: Aloe Books.
- Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. *Nature* 405: 907–913.
- Hinschberger F, Malod JA, Dyment J, Honthaas C, Réhault JP, Burhanuddin S. 2001. Magnetic lineation constraints for the back-arc opening of the Late Neogene south Banda Basin (eastern Indonesia). *Tectonophysics* 333: 47–59.
- Hinschberger F, Malod JA, Réhault JP, Dyment J, Honthaas C, Villeneuve M, Burhanuddin S. 2000. Origine et évolution du Bassin Nord Banda (Indonésie): apport des donneés magné-tiques. Des Comptes Rendus de l'Académie des sciences 331: 507–514.
- Hinschberger F, Malod JA, Réhault JP, Villeneuve M, Royer JY, Burhanuddin S. 2005. Late Cenozoic geodynamic evolution of eastern Indonesia. *Tectonophysics* 404: 91–118.
- Honthaas C, Réhault JP, Maury RC, Bellon H, Hémond C, Malod JA, Cornée JJ, Villeneuve M, Cotten J, Burhanuddin S, Guillou H, Arnaud N. 1998. A Neogene back-arc origin for the Banda Sea basins: geochemical and

geochronological constraints from the Banda ridges (east Indonesia). *Tectonophysics* **298:** 297–317.

- Honthaas C, Villeneuve M, Réhault JP, Bellon H, Cornée JJ, Saint-Marc P, Butterlin J, Gravelle M, Burhanuddin S. 1997. L'île de Kur: géologie du flanc oriental du bassin de Weber (Indonésie orientale). Des Comptes Rendus de l'Académie des sciences 325: 883– 890.
- Hughes JB, Round PD, Woodruff DS. 2003. The Indochinese-Sundaic faunal transition at the Isthmus of Kra: an analysis of resident forest bird species distributions. Journal of Biogeography 30: 569–580.
- Hutchison CS. 1989. Geological evolution of south-east Asia. Oxford: Clarendon Press.
- Hutchison CS. 1992. The Eocene unconformity on South-east and East Sundaland. *Geological Society of Malaysia Bulle*tin 32: 69–88.
- Inger RI. 1954. Systematics and zoogeography of Philippine Amphibia. *Fieldiana* 33: 182–531.
- Jiggins CD, Mallarino R, Willmott KR, Bermingham E. 2006. The phylogenetic pattern of speciation and wing pattern change in Neotropical *Ithomia* butterflies (Lepidoptera: Nymphalidae). *Evolution* **60**: 1454–1466.
- Kennedy RS, Gonzales PC, Dickinson EC, Miranda HC Jr, Fisher TH. 2000. A guide to the birds of the Philippines. Oxford: Oxford University Press.
- Klicka J, Zink RM. 1997. The importance of Recent ice ages in speciation: a failed paradigm. *Science* 277: 1666– 1669.
- Kodandaramaiah U, Wahlberg N. 2007. Out-of-Africa origin and dispersal mediated diversification of the butterfly genus Junonia (Nymphalidae: Nymphalinae). Journal of Evolutionary Biology 20: 2181–2191.
- Kodandaramaiah U, Wahlberg N. 2009. Phylogeny and biogeography of *Coenonympha* butterflies (Nymphalidae: Satyrinae) – patterns of colonization in the Holarctic. Systematic Entomology 34: 315–323.
- Kreemer C, Holt WE, Goes S, Govers R. 2000. Active deformation in eastern Indonesia and the Philippines from GPS and seismicity data. *Journal of Geophysical Research* 105: 663–680.
- Lane DA, Müller CJ. 2006. A new species of Charaxes Ochsenheimer (Lepidoptera: Nymphalidae) from East Timor. Australian Entomologist 33: 71–76.
- Lee T-Y, Lawver LA. 1995. Cenozoic plate reconstruction of Southeast Asia. *Tectonophysics* 251: 85–138.
- Leneveu J, Chichvarkhin A, Wahlberg N. 2009. Varying rates of diversification in the genus *Melitaea* (Lepidoptera: Nymphalidae) during the past 20 million years. *Biological Journal of the Linnean Society* 97: 346–361.
- Letouzey J, de Clarens P, Guignard J, Berthon JL. 1983. Structure of the north Banda–Molucca area from multichannel seismic reflection data. IPA 12th Annual Convention, Jakarta. Proceedings of the Indonesian Petroleum Association: 143–156.
- Maschwitz U, Schroth M, Haenel H, Pong TY. 1984. Lycaenids parasitizing symbiotic plant-ant partnerships. *Oecologia* 64: 78-80.

- McCaffrey R, Abers GA. 1991. Orogeny in arc-continent collision: the Banda Arc and western New Guinea. *Geology* 19: 563–566.
- McElhinny MW, Haile NS, Crawford AS. 1974. Palaeomagnetic evidence shows Malay Peninsula was not part of Gondwana. *Nature* 252: 641–645.
- Megens H-J, van Moorsel CHM, Piel WH, Pierce NE, de Jong R. 2004. Tempo of speciation in a butterfly genus from the Southeast Asian tropics, inferred from mitochondrial and nuclear DNA sequence data. *Molecular Phylogenetics* and Evolution 31: 1181–1196.
- Michaux B. 1994. Land movements and animal distributions in east Wallacea (eastern Indonesia, Papua New Guinea and Melanesia). *Palaeogeography, Palaeoclimatology, Palaeoecology* 112: 323–343.
- Monk KA, De Fretes Y, Reksodiharjo-Lilley G. 1997. *The* ecology of Nusa Tenggara and Maluku. Oxford: Oxford University Press.
- Morinaka S, Minaka N, Sekiguchi M, Erni W, Nuramaliati P, Ida KG, Miyata T, Hidaka T. 2000. Molecular phylogeny of birdwing butterflies of the tribe Troidini (Lepidoptera: Papilionidae) – using all species of the genus Ornithoptera. Biogeography 2: 103–111.
- Moritz CJ, Patton L, Schneider CJ, Smith TB. 2000. Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecological Systems 31: 533– 563.
- Moss SJ, Wilson MEJ. 1998. Biogeographic implications of the Tertiary palaeogeographic evolution of Sulawesi and Borneo. In: Hall R, Holloway JD, eds. *Biogeography and* geological evolution of SE Asia. Leiden: Backhuys Publishers, 133–163.
- Müller CJ. 2004. A new species of Nirvanopsis Vane-Wright (Lepidoptera: Nymphalidae) from the Sula Islands, Indonesia. Australian Entomologist 31: 75–78.
- **Natus IR. 2005.** Unpublished. Biodiversity and endemic centres of Indonesian terrestrial vertebrates.
- O[h]tsuka K. 1996. Bornean butterflies examined through distribution. Japan: Fujimura High School Bulletin 1–52.
- Packham G. 1996. Cenozoic SE Asia: reconstructing its aggregation and reorganization. In: Hall R, Blundell DJ, eds. *Tectonic evolution of southeast Asia*. London: Geological Society of London, Special Publications 106: 123–152.
- Peña C, Wahlberg N. 2008. Prehistorical climate change increased diversification of a group of butterflies. *Biology Letters* 4: 274–278.
- Pinratana A, Eliot JN. 1996. Butterflies in Thailand. 3, Nymphalidae (Second and revised edition). Bangkok: Privately published.
- Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA substitution. *Bioinformatics* 14: 817–818.
- Rangin C, Stephan JF, Müller C. 1985. Middle Oligocene crust of the South China Sea jammed into Mindoro collision zone (Philippines). *Geology* 13: 425–428.
- **Reddy S. 2008.** Systematics and biogeography of the shrikebabblers (*Pteruthius*): Species limits, molecular phylogenetics, and diversification patterns across southern Asia. *Molecular Phylogenetics and Evolution* **47**: 54–72.

- Réhault JP, Maury RC, Bellon H, Sarmili L, Burhanuddin S, Joron JL, Cotten J, Malod JA. 1994. La Mer de Banda Nord (Indonésie): un bassin arrière-arc du Miocéne supérieur. Des Comptes Rendus de l'Académie des sciences 318: 969–976.
- Richardson AN, Blundell DJ. 1996. Continental collision in the Banda Arc. In: Hall R, Blundell DJ, eds. *Tectonic evolution of southeast Asia*. London: Geological Society of London, Special Publications 106, 47–60.
- **Ronquist F. 1997.** Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. *Systematic Biology* **46:** 195–203.
- Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572–1574.
- Schmidtke EA, Fuller MD, Haston R. 1990. Palaeomagnetic data from Sarawak, Malaysian Borneo, and the late Mesozoic and Cenozoic tectonics of Sundaland. *Tectonics* 9: 123–140.
- Sequencher. 2000. Sequencher, Version 4.1.2 for Macintosh. Ann Arbor, MI: Gene Codes Corporation.
- Silva-Brandão KL, Freitas AVL, Brower AVZ, Solferini VN. 2005. Phylogenetic relationships of the New World Troidini swallowtails (Lepidoptera: Papilionidae) based on COI, COII, and EF-1α genes. *Molecular Phylogenetics and Evolution* 36: 468–483.
- Silva-Brandão KL, Wahlberg N, Francini RB, Azeredo-Espin AL, Brown KS, Paluch M, Lees DC, Freitas AVL.
 2008. Phylogenetic relationships of butterflies of the tribe Acraeini (Lepidoptera, Nymphalidae, Heliconiinae) and the evolution of host plant use. *Molecular Phylogenetics and Evolution* 46: 515–531.
- Simon C, Frati F, Beckenbach A, Crespi BJ, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Annals of the Entomological Society of America* 87: 651–701.
- Simonsen TJ, Wahlberg N, Brower AVZ, de Jong R. 2006. Morphology, molecules and Fritillaries: approaching a stable phylogeny for Argynnini (Lepidoptera: Nymphalidae). *Insect* Systematics and Evolution 37: 405–418.
- Smiles RL. 1982. The taxonomy and phylogeny of the genus Polyura Billberg (Lepidoptera: Nymphalidae). Bulletin of the Natural History Museum, Entomology Series 44: 115– 237.
- Smiles RL. 1985. Cladistics and distribution of *Euxanthe* butterflies (Nymphalidae: Charaxinae). *Journal of Natural History* 19: 1165–1189.
- Smith RB, Silver EA. 1991. Geology of a Miocene collision complex, Buton, eastern Indonesia. *Geological Society of America Bulletin* 103: 660–678.
- **Sorenson MD, Franzosa EA. 2007.** *Treerot.* version 3. Boston, MA: Boston University.
- Sperling FAH. 2003. Butterfly molecular systematics: from species definitions to higher-level phylogenies. In: Boggs CL, Watt WB, Ehrlich PR, eds. *Butterflies: ecology and evolution taking flight*. Chicago, IL: University of Chicago Press, 431–458.

- Su ZH, Tominaga O, Okamoto M, Osawa S. 1998. Origin and diversification of hindwingless Damaster ground beetles within the Japanese islands as deduced from mitochondrial ND5 gene sequences (Coleoptera, Carabidae). *Molecular Biology and Evolution* **15**: 1026–1039.
- Swofford DL. 2002. Paup*. Phylogenetic analysis using parsimony (*and other methods), Version 4 0b10 for Macintosh. Sunderland, MA: Sinauer Associates.
- Szalanski AL, Owens CB, Lewter JA, Broce AB. 2006. Genetic structure of Aedes vexans (Diptera: Culicidae) populations from central United States based on mitochondrial ND5 sequences. Annals of the Entomological Society of America 99: 157–163.
- Taberlet P, Cheddadi R. 2002. Quaternary refugia and persistence of biodiversity. *Science* 297: 2009–2010.
- Tamura K, Dudley J, Nei M, Kumar S. 2006. Molecular Evolutionary Genetics Analysis (MEGA), Version 4.0 (Beta release).
- Torres E, Lees DC, Vane-Wright RI, Kremen C, Leonard JA, Wayne RK. 2001. Examining monophyly in a large radiation of Madagascan butterflies (Lepidoptera: Satyrinae: Mycalesina) based on mitochondrial DNA data. *Molecular Phylogenetics and Evolution* **20**: 460–473.
- Van Balgooy MMJ. 1987. The phytogeographical position of Sulawesi (Celebes. In: Hovenkamp P, ed. Systematics and evolution: a matter of diversity. Netherlands: Utrecht University, 263–270.
- Van Someren VGL. 1975. Revisional notes on African Charaxes, Palla and Euxanthe (Lepidoptera: Nymphalidae). Part X. Bulletin of the Natural History Museum, Entomology Series 32: 65–136.
- Vane-Wright RI. 1990. The Philippines-key to the biogeography of Wallacea? In: Knight WJ, Holloway JD, eds. Insects and the rain forests of South East Asia (Wallacea). London: The Royal Entomological Society of London, 19–34.
- Vane-Wright RI, de Jong R. 2003. The butterflies of Sulawesi: annotated checklist for a critical island fauna. Zoologische Verhandelingen, Leiden 343: 3–267.
- Villeneuve M, Cornée JJ, Gunawan W, Janin MC, Butterlin J, Saint-Marc P, Samodra H. 2000. Continental block collision in the eastern arm of Sulawesi (Indonesia). Structure and geodynamic interpretation. Des Comptes Rendus de l'Académie des sciences 330: 371–378.
- Villeneuve M, Cornée JJ, Gunawan W, Martini R, Tronchetti G, Janin MC, Saint-Marc P, Zaninetti L. 2001. La succession lithostratigraphique du bloc de Banda dans la région de Kolonodale (Sulawesi central, Indonésie). Bulletin de la Societe Geologique de France 172: 59–68.
- Villeneuve M, Réhault JP, Cornée JJ, Honthaas C, Gunawan W, Geobanda G. 1998. Evolution géodynamique de l'Indonésie orientale, de l'Eocène au Pliocène. *Des Comptes Rendus de l'Académie des sciences* **327:** 291–302.
- Von Koenigswald GHR. 1967. An upper Eocene mammal of the family Anthracotheriidae from the island of Timor, Indonesia. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B: Palaeontology, Geology, Physics and Chemistry 70: 529–533.

- Wahlberg N. 2006. That awkward age for butterflies: insights from the age of the butterfly subfamily Nymphalinae. Systematic Biology 55: 703–714.
- Wahlberg N, Freitas AVL. 2007. Colonization of and radiation in South America by butterflies in the subtribe Phyciodina (Lepidoptera: Nymphalidae). *Molecular Phylogenetics* and Evolution 44: 1257–1272.
- Wahlberg N, Saccheri I. 2007. The effects of Pleistocene glaciations on the phylogeography of *Melitaea cinxia* (Lepidoptera: Nymphalidae). *European Journal of Entomology* 104: 675–684.
- Wahlberg N, Weingartner E, Nylin S. 2003. Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea). *Molecular Phylogenetics* and Evolution 28: 473–484.
- Wahlberg N, Wheat CW. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Systematic Biology 57: 231–242.
- Wallace AR. 1863. On the physical geography of the Malay Archipelago. Journal of the Royal Geographic Society 33: 217–234.
- Walsh PS, Metzger DA, Higuchi R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. *Biotechniques* 10: 506–513.
- Ward PS. 1999. Systematics, biogeography and host plant associations of the *Pseudomyrmex viduus* group (Hymenoptera: Formicidae), Triplaris- and Tachigaliinhabiting ants. *Zoological Journal of the Linnean Society* 126: 451–540.
- Weingartner E, Wahlberg N, Nylin S. 2006. Speciation in *Pararge* (Satyrinae: Nymphalidae) butterflies North Africa is the source of ancestral populations of all *Pararge* species. *Systematic Entomology* **31:** 621–632.
- Wells DR. 1976. Resident Birds. In: Medway L, Wells DR, eds. The birds of the Malay Peninsula, vol. V: conclusions, and survey of every species. London: HF & G Witherby Ltd., 1–33.
- Widmann P. 1998. A guide to the ecosystems of Palawan, Philippines. Baybay Leyte, Philippines: ViSCAGTZ Program on Applied Tropical Ecology, Visayas State College of Agriculture.
- Williams MC. 2008. Butterflies and skippers of the Afrotropical Region (Papilionoidea and Hesperioidea). Seventh edition. A digital encyclopedia. http://atbutterflies.com/.
- Willis KJ, McElwain, JC. 2002. The Evolution of Plants. Oxford University Press, Oxford, UK.
- **Woodruff DS. 2003.** Neogene marine transgressions, paleogeography and biogeographic transitions on the Thai-Malay Peninsula. *Journal of Biogeography* **30:** 551–567.
- Yagi T, Sasaki G, Takebe H. 1999. Phylogeny of Japanese papilionid butterflies inferred from nucleotide sequences of the mitochondrial ND5 gene. *Journal of Molecular Evolution* 48: 42–48.
- Zwickl DJ, Hillis DM. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51: 588–598.

Table A1. E	xemplar taxa used in the presen	it study, with collection lo	ocalities and Gen	Bank accession numbers			
Tribe	Taxon name	Author	Voucher Code	Locality	COI	ND5	Wingless
<i>Outgroup</i> Calinaginae Charaxinae	Calinaga buddha ssp. Anaea troglodyta astina	Moore, 1857 (Fabricius, 1793)	NW64-3 NW152-18	UK: Stratford Butterfly Farm DOMINICAN REPUBLIC:	AY090208 GQ256760	GU585289 GU585289 GU585291	AY090141 GQ256650
	Archaeoprepona demophon ssp. Charaxes bipunctatus	(Linnaeus, 1758) Rothschild, 1894	NW81-9 KAP-222	Pedernales UK: Stratford Butterfly Farm GHANA: Bobiri	AY090220 GQ256780	GU585290 GU585331	AY090153 GQ256667
	bipunctatus Charaxes boueti boueti Charaxes castor ssp.	Feisthamel, 1850 (Cramer, [1775])	KAP-050 NW78-3 NW107 11	GHANA: Bobiri UK: Stratford Butterfly Farm	GQ256786 AY090219 COBEE704	GU585332 -	GQ256672 AY090152 CO356678
	Charaxes cynnna cynnua Charaxes etesipe etesipe Charaxes jasius jasius Charaxes nichetes	Godart, 1000 (Godart, 1824) Joicey & Talbot, 1921 (Linnaeus, 1767) Rousseau-Decelle,	NW164-2 NW164-2 NW164-3 NW147-3 NW114-14	UGANDA: Kibale Forest UGANDA: Kibale Forest ITALY: Canneto ZAMBIA: Lesombo River	GQ256800 GQ256800 GQ256824 GQ256824 GQ256842	GU585334 GU585334 GU585335 GU585327 GU585336	ୟୁ 250010 GQ 256684 GQ 256690 GQ 256703 GQ 256718
	puntuerinus Charaxes porthos dummeri Charaxes protoclea Charaxes zingha Euxanthe eurinome eurinome Polyura moori chalazias Prothoe franck borneensis	Joicey & Talbot, 1922 Feisthamel, 1850 (Stoll, 1780) (Cramer, [1775]) Fruhstorfer, 1914 Fruhstorfer, 1913	NW118-11 KAP-251 NW133-1 NW131-10 NW121-24 CJM-187-001	UGANDA: Kibale Forest GHANA: Bia GHANA: Boi-Tano GHANA: Ankasa INDONESIA: Bali INDONESIA: Long Laai, Kalimaatan	GQ256858 GQ256860 GQ256878 EU141357 EU1528325 GU585249	GU585337 GU585338 GU585339 GU585292 GU585293 GU585301	GQ256733 GQ256735 GQ256751 EU141238 EU528282 GU585340
lngroup Charaxinae	Charaxes affinis affinis Charaxes affinis butongensis Charaxes amycus amycus Charaxes antonius Charaxes aristogiton periodoneus	Butler, 1865 Tsukada, 1991 C. & R. Felder, 1861 Hanafusa, 1985 Fruhstorfer, 1914	CJM-169-003 CJM-170-005 CJM-175-002 CJM-179-002 CJM-205-003	INDONESIA: Toraja, central Sulawesi INDONESIA: Buton Is. PHILIPPINES: Mindoro PHILIPPINES: Leyte Is. THAILAND: Chiangmai	GU585259 GU585278 GU585279 GU585279 GU585265 GU585265	- GU585304 GU585306 GU585296 GU585324	- GU585359 - GU585348 GU585357

APPENDIX

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 457–481

J585251 – GU585361 J585256 GU585322 GU585358	U585250 – – – J585253 GU585316 GU585345 Q256779 GU585330 GQ256666	2256777 GU585328 GQ256664 2256778 GU585329 GQ256665 3585273 GU585312 –	GU585317 – J585274 GU585320 GU585349	GU585323 GU585364	J585254 GU585318 GU585342	J585254 GU585318 GU585342 J585280 GU585314 GU585347 J585267 GU585294 –	J585254 GU585318 GU585342 J585280 GU585314 GU585347 J585267 GU585294 – J585281 GU585319 GU585343	J585254 GU585318 GU585342 J585280 GU585314 GU585347 J585267 GU585294 - J585281 GU585319 GU585343 J585281 GU585319 GU585343	J585254 GU585318 GU585342 J585280 GU585314 GU585347 J585267 GU585314 GU585343 J585281 GU585319 GU585343 J585282 - - J585282 - - J585282 - - J585282 - - J585283 GU585307 - J585283 GU585321 GU585350 J585283 GU585321 GU585350	J585254 GU585318 GU585342 J585280 GU585314 GU585347 J585281 GU585294 - J585281 GU585319 GU585343 J585282 GU585319 GU585343 J585282 - - J585283 GU585307 - J585283 GU585295 GU585344 J585283 GU585295 GU585346 J585283 GU585295 GU585321 J585283 GU585295 GU585346 J585285 - - J585285 - -
PHILIPPINES: Palawan GU PHILIPPINES: Panay Is. GU	INDONESIA: Sumatra GL INDONESIA: Bali Is. GL VIETNAM: Cuc Phuong GG	BANGLADESH BANGLADESH GG INDONESIA: Sengayan, GU	Kalimantan INDONESIA: Sengayan, – Kalimantan INDONESIA: Gupak, GU	Kalimantan INDONESIA: Sengayan, –	Kalimantan INDONESIA: Sengayan, GU	Kalimantan INDONESIA: Sengayan, GU Kalimantan PHILIPPINES: Palawan GU INDONESIA: Long Laai, GU Kalimantan	Kalimantan INDONESIA: Sengayan, GU Kalimantan PHILIPPINES: Palawan GU INDONESIA: Long Laai, GU Kalimantan INDONESIA: West Java GU	Kalimantan INDONESIA: Sengayan, GU Kalimantan PHILIPPINES: Palawan GU INDONESIA: Long Laai, GU Kalimantan INDONESIA: West Java GU INDONESIA: Sumba is. GU	Kalimantan INDONESIA: Sengayan, GU Kalimantan PHILIPPINES: Palawan GU INDONESIA: Long Laai, GU Kalimantan INDONESIA: Long Laai, GU INDONESIA: West Java GU INDONESIA: West Java GU INDONESIA: Sumba is. GU INDONESIA: Sumba is. GU INDONESIA: Simeulue Is. GU	Kalimantan INDONESIA: Sengayan, GU Kalimantan PHILIPPINES: Palawan GU INDONESIA: Long Laai, GU Kalimantan INDONESIA: Long Laai, GU INDONESIA: West Java GU INDONESIA: Sumba is. GU INDONESIA: Sumba is. GU INDONESIA: Seram Is. GU INDONESIA: Seram Is. GU INDONESIA: Shawan GU INDONESIA: Satawan GU PHILIPPINES: Palawan GU
CJM-201-001 CJM-210-003	CJM-208-001 CJM-198-020 NW134-12	NW134-10 NW134-11 CJM-200-014	CJM-203-001	CJM-193-003	CJM-195-003	CJM-195-003] CJM-188-001] CJM-186-001]	CJM-195-003] CJM-188-001] CJM-186-001] CJM-212-001]	CJM-195-003] CJM-188-001] CJM-186-001] CJM-212-001] CJM-189-001]	CJM-195-003 CJM-188-001 CJM-186-001 CJM-186-001 CJM-189-001 CJM-196-001 CJM-194-001 CJM-194-001	CJM-195-003 CJM-188-001 CJM-186-001 CJM-186-001 CJM-196-001 CJM-196-001 CJM-194-001 CJM-194-001 CJM-185-001 CJM-178-002 CJM-181-007 CJM-181-007
Staudinger, 1889 Schröder &	Treadaway, 1982 Fawcett, 1897 Moore, 1857 (Fabricius, 1793)	Butler, 1870 Butler, 1870 Undescribed	Undescribed Undescribed	Undescribed	Butler, 1869	Butler, 1869 Staudinger 1889 Fruhstorfer, 1914	Butler, 1869 Staudinger 1889 Fruhstorfer, 1914 Rothschild, 1894	Butler, 1869 Staudinger 1889 Fruhstorfer, 1914 Rothschild, 1894 Tsukada & Nishiyama 1979	Butler, 1869 Staudinger 1889 Fruhstorfer, 1914 Rothschild, 1894 Tsukada & Nishiyama, 1979 (Cramer, [1775]) Tsukada, 1991 Staudinger, 1885	Butler, 1869 Staudinger 1889 Fruhstorfer, 1914 Rothschild, 1894 Tsukada & Nishiyama, 1979 (Cramer, [1775]) Tsukada, 1991 Staudinger, 1885 (Moore, [1895]) Rothschild, 1900 Butler, 1865 Butler, 1869
Charaxes bajula bajula Charaxes bajula basilisae	Charaxes bernardus ajax Charaxes bernardus baya Charaxes bernardus	bernardus Charaxes bernardus hemana Charaxes bernardus hemana Charaxes bernardus ssp.	Charaxes bernardus ssp. Charaxes bernardus ssp.	Charaxes bernardus ssp.	Charaxes borneensis	Charaxes borneensis borneensis Charaxes bupalus Charaxes distanti thespius	Charaxes borneensis borneensis Charaxes bupalus Charaxes distanti thespius Charaxes durnfordi staudingeri	Charaxes borneensis borneensis Charaxes bupalus Charaxes distanti thespius charaxes durnfordi staudingeri Charaxes elwesi pugnax	Charaxes borneensis borneensis Charaxes bupalus Charaxes distanti thespius Charaxes durnfordi staudingeri charaxes eluesi pugnax Charaxes fervens igneus Charaxes fervens igneus Charaxes harmodius	Charaxes borneensis borneensis borneensis Charaxes bupalus Charaxes durnfordi staudingeri charaxes elwesi pugnax Charaxes elwesi pugnax Charaxes harmodius harpagon charaxes kahruba Charaxes latona artemis Charaxes latona papuensis

Tribe	Taxon name	Author	Voucher Code	Locality	COI	ND5	Wingless
	Charaxes marki	Lane & Müller, 2006	CJM-148-001	EAST TIMOR, Maur Region	GU585263	GU585300	GU585341
	Charaxes marmax philopator	Fruhstorfer, 1914	CJM-197-004	THAILAND: Chiangmai	GU585257	GU585313	GU585360
	Charaxes mars	Staudinger, 1885	CJM-199-004	INDONESIA: Seryong, central Sulawesi	GU585264	GU585297	GU585356
	Charaxes musashi	Tsukada, 1991	CJM-192-001	INDONESIA: Seryong, central Sulawesi	GU585284	GU585305	GU585353
	Charaxes nitebis nitebis	Hewitson, 1862	CJM-207-004	INDONESIA: Luwuk, Sulawesi	GU585288	I	I
	Charaxes nitebis sulaensis	Rothschild, 1900	CJM-191-007	INDONESIA: Peleng Is.	GU585287	I	GU585366
	Charaxes ocellatus sumbanus	Rothschild, 1896	CJM-171-001	INDONESIA: Sumba Is.	GU585261	GU585325	GU585351
	Charaxes orilus orilus	Butler, 1869	CJM-173-001	INDONESIA: Kapan, West Timor	GU585262	GU585299	GU585352
	Charaxes plateni	Staudinger, 1889	CJM-209-002	PHILIPPINES: Palawan	GU585258	GU585315	GU585346
	Charaxes psaphon	Westwood, 1847	CJM-204-002	SRI LANKA	GU585286	Ι	I
	Charaxes repetitus	Butler, 1896	CJM-172-003	INDONESIA: Sengayan, Kalimantan	GU585276	I	I
	Charaxes repetitus	Butler, 1896	CJM-183-007	INDONESIA: Sengayan, Kalimantan	GU585275	I	GU585363
	Charaxes sangana sangana	Schroder & Treadaway, 1988	CJM-202-001	PHILIPPINES: Sanga Sanga Is.	GU585266	GU585326	I
	Charaxes setan	Detani, 1983	CJM-166-001	INDONESIA: Peleng Is.	GU585260	GU585303	GU585354
	Charaxes solon cunctator Charaxes solon hannibal	Fruhstorfer, 1914 Butler, 1869	CJM-174-001 CJM-184-005	THAILAND: Chiangmai INDONESIA: Salawatang,	GU585270 GU585271	GU585309 -	GU585362 GU585365
	Charaxes solon lampedo	Hübner, 1816	CJM-213-003	Dulawesi PHILIPPINES: Negros	GU585269	GU585311	I
	Charaxes solon lampedo Charaxes solon sulphureus	Hübner, 1816 Rothschild & Jordan 1898	CJM-214-002 NW134-13	PHILIPPINES: Palawan BANGLADESH	GU585268 CQ256866	GU585310 -	- CQ256739

 Table A1.
 Continued

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 457–481

Species group/ clade	Taxon
African/solon	C. solon (Fabricius, 1793)
elwesi	elwesi Joicey & Talbot, 1922
mars	marki Lane & Müller, 2006
	mars Staudinger, 1885
	ocellatus Fruhstorfer, 1896
	orilus Butler, 1869
nitebis	nitebis Hewitson, 1862
harmodius	distanti Honrath, 1885
	harmodius C. & R. Felder, 1867
amycus	amycus C. & R. Felder, 1861
	antonius Semper, 1878
	sangana Schroder & Treadaway, 1988
eurialus	eurialus (Cramer, [1775])
_	madensis Rothschild, 1899
latona	affinis Butler, 1865
	<i>latona</i> Butler, 1865
	musashi Tsukada, 1991
	setan Detani, 1983
bernardus	aristogiton C. & R. Felder, 1867
	<i>bajula</i> Staudinger, 1889
	bernardus (Fabricius, 1793)
	borneensis Butler, 1869
	bupalus Staudinger 1889
	durnfordi Distant, 1884
	fervens Butler, 1889
	kahruba (Moore, [1895])
	marmax Westwood, 1847
	plateni Staudinger, 1889
	psaphon Westwood, 1847
	repetitus Butler, 1896

Table A2. Indo-Pacific Charaxes species groups andcomposition

Appendix A3.

Charaxes repetitus Butler, 1896. Journal of the Linnean Society of London (Zoology), **25**, 392. Charaxes bernardus repetitus Butler – d'Abrera, 1985: 398; Otsuka, 1988: plate 75.

Type locality. Sarawak, East Malaysia (Borneo: Holotype male Figs A1, 13 & 14).

Other material examined. 33 males, labelled INDONESIA, approximately 65 km south Malinau, north-east Kalimantan, July, 2000, July-Aug, 2003.

Diagnosis. Larger than C. bernardus: (Figs A1: 3, 4, 7, 8, 11, 12) (FW length 43–47 mm, N = 33), dark apical region is broader, underside is unicolourous by comparison to bernardus. A paler median band is present on the fore wing upperside, and the overall ground colour above is very tawny brown and not orange as in C. bernardus. The inner margin of the hindwing upperside is cream-grey, unlike bernardus which is orange. Wing shape is consistent, while that of bernardus is variable.

Appendix A3. Continued

Charaxes repetitus differs from *C. bernardus*, as well as *C. borneensis*, from changes of several bases in *COI* (approximately 1.5% divergence).

Distribution. Known only from Borneo.

Remarks. Butler, in the original description, considered *C. repetitus* to be the Bornean representative of *C. polyxena*. The type was not illustrated by Butler and seemingly has never been figured, such that no correlation has been made in recognizing the two sympatric species. In fact, both *C. repetitus* and *C. bernardus* fly together in Borneo, where the former appears to be very localized. The subspecies of *C. bernardus* in Borneo is rendered undescribed.

Charaxes repetitus is a much larger, more robust insect than that of *C. bernardus*. Behaviourly, *C. repetitus* is distinct from *C. bernardus*. The former species does not appear to be attracted to bait (carrion, dung, urine), unlike *C. bernardus*, which is readily lured. Additionally, nearly all known specimens are from open hill-tops. *C. bernardus* may frequent the same hill-tops, but is more commonly observed on hill-tops with a partially closed canopy.

A distinct difference was noted in the appearance times of the two taxa on hill tops in Borneo. *Charaxes bernardus* was first to appear at approximately 10.30 h and leaving around 13.30 h. *Charaxes repetitus* would appear shortly afterwards, around 14.00 h and persist until 15.30 h, whereas *C. borneensis* would overlap partially with *C. repetitus*, flying later into the afternoon. This difference in timing has been recorded in hill-topping behaviour in closely-related sympatric African *Charaxes* by Henning (1989), who noted that males of *Charaxes legeri* Plantrou arrive between 09.00 and 09.40 h and leave between 10.10 and 10.50 h, whereas *C. jasius epijasius* (Reiche) (arrived between 11.25 and 13.30 h and departs at approximately 15.00 h). This behaviour is not unique to *Charaxes* and fine scale non-overlapping late afternoon flight durations were noted in species of sympatric green *Arhopala* Boisduval species of the *aurea* species group ((*Arhopala trogon* (Distant), *Arhopala caeca* (Hewitson), *Arhopala borneensis* Bethune-Baker)) also on mountain tops in Borneo (C. Müller, pers. observ.). This behaviour is presumed to maintain isolation between species.

Table A4. Unrestricted ancestral areas for nodes, as a result of the dispersal-vicariance analysis

Node 1 DG EG DEG FG DFG EFG DEFG

Node 2 CIJ CDIJ CEIJ CDEIJ CGIJ CDGIJ CEGIJ CDEGIJ CHIJ CDHIJ CEHIJ CDEHIJ CDHIJ CDGHIJ CEGHIJ CDEGHIJ CIJL CDIJL CEIJL CDEIJL CGIJL CDGIJL CEGIJL CDEGIJL CHIJL CDHIJL CEHIJL CDEHIJL CGHIJL CDGHIJL CEGHIJL CDEGHIJL

Node 3 CFHIJK CDFHIJK CEFHIJK CDEFHIJK CFGHIJK CDFHIJK CEFGHIJK CDEFGHIJK CFHIJKL CDFHIJKL CDEFHIJKL CDEFHIJKL CDEFHIJKL CDEFHIJKL CDEFGHIJKL

Node 4 ACFHIJK ACDFHIJK ACEFHIJK ACDEFHIJK ACFGHIJK ACDFGHIJK ACEFGHIJK ACDEFGHIJK ACFHIJKL ACDFHIJKL ACEFHIJKL ACDEFHIJKL ACFGHIJKL ACDFGHIJKL ACEFGHIJKL ACDEFGHIJKL

Node 5 ACFHIJK ACDFHIJK ACEFHIJK ACDEFHIJK ACFGHIJK ACDFGHIJK ACEFGHIJK ACDEFGHIJK ACFHIJKL ACDFHIJKL ACEFHIJKL ACDEFHIJKL ACFGHIJKL ACDFGHIJKL ACEFGHIJKL ACDEFGHIJKL

Node 6 AC AD ACD AE ACE ADE ACDE AF ACF ADF ACDF AEF ACEF ADEF ACDEF AG ACG ADG ACDG AEG ACEG ADEG ACDEG AFG ACFG ADFG ACDFG AEFG ACEFG ADEFG ACDEFG AH ACH ADH ACDH AEH ACEH ADEH ACDEH AFH ACFH ADFH ACDFH AEFH ACEFH ADEFH ACDEFH AGH ACGH ADGH ACDGH AEGH ACEGH ADEGH ACDEGH AFGH ACFGH ADFGH ACDFGH AEFGH ACEFGH ADEFGH ACDEFGH ACDEFGH

Node 7 ACFHIJK ACDFHIJK ACEFHIJK ACDEFHIJK ACFGHIJK ACDFGHIJK ACEFGHIJK ACDEFGHIJK ACFHIJKL ACDFHIJKL ACEFHIJKL ACDEFHIJKL ACFGHIJKL ACDFGHIJKL ACEFGHIJKL ACDEFGHIJKL

Node 8 ACEFHIJK ACDEFHIJK ACFGHIJK ACDFGHIJK ACEFGHIJK ACDEFGHIJK ACEFHIJKL ACDEFHIJKL ACDEFHIJKL ACDEFGHIJKL ACDEFGHIJKL ACDEFGHIJKL

Node 9 ACEFGHIJKL ABCEFGHIJK ACDEFGHIJK ABCDEFGHIJK ACEFGHIJKL ABCEFGHIJKL ABCEFGHIJKL

Node 10 ABCEFGHIJK ABCDEFGHIJK ABCEFGHIJKL ABCDEFGHIJKL

Node 11 ABCDEFGHIJK ABCDEFGHIJKL