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Abstract
Galapagos giant tortoises (Chelonoidis spp.) are a group of large, long-lived reptiles 
that includes 14 species, 11 of which are extant and threatened by human activi-
ties and introductions of non-native species. Here, we evaluated the phylogenetic 
relationships of all extant and two extinct species (Chelonoidis abingdonii from the 
island of Pinta and Chelonoidis niger from the island of Floreana) using Bayesian 
and maximum likelihood analysis of complete or nearly complete mitochondrial ge-
nomes. We also provide an updated phylogeographic scenario of their colonization 
of the Galapagos Islands using chrono-phylogenetic and biogeographic approaches. 
The resulting phylogenetic trees show three major groups of species: one from the 
southern, central, and western Galapagos Islands; the second from the northwest-
ern islands; and the third group from the northern, central, and eastern Galapagos 
Islands. The time-calibrated phylogenetic and ancestral area reconstructions gener-
ally align with the geologic ages of the islands. The divergence of the Galapagos giant 
tortoises from their South American ancestor likely occurred in the upper Miocene. 
Their diversification on the Galapagos adheres to the island progression rule, starting 
in the Pleistocene with the dispersal of the ancestral form from the two oldest islands 
(San Cristóbal and Española) to Santa Cruz, Santiago, and Pinta, followed by multiple 
colonizations from different sources within the archipelago. Our work provides an 
example of how to reconstruct the history of endangered taxa in spite of extinctions 
and human-mediated dispersal events and provides a framework for evaluating the 
contribution of colonization and in situ speciation to the diversity of other Galapagos 
lineages.
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1  | INTRODUC TION

Oceanic islands are excellent systems to observe and interpret pat-
terns of evolution due to their well-defined and often young geological 
histories, relative isolation, distinct boundaries, heterogeneous envi-
ronments, and simplified biotas (Losos & Ricklefs,  2009). Dispersal, 
rather than geological vicariance, appears to be the principal driver 
of range evolution and subsequent speciation, regardless of the 
geological histories and ages of island systems (Iwanycki Ahlstrand 
et al., 2019). Advances in molecular phylogenetic/divergence analyses 
in tandem with increasing availability of geologic data have allowed for 
the ages of oceanic islands to be used for calibrating molecular clocks 
in many studies of insular biota. The use of island age-based calibra-
tions has the theoretical advantage of providing maximum age con-
straints for dating relatively shallow divergences, in comparison with 
the use of fossils that tend to provide minimum ages more appropriate 
for inferring the timeframe of deeper splits (Hawlitschek et al., 2017). 
However, this approach has been challenged by several studies 
that estimated clade ages for a variety of organisms that were older 
than the purported ages of the islands to which they are endemic. 
Prominent examples include the divergences between island clades 
of endemic iguanas (MacLeod et al., 2015; Rassmann, 1997) and wee-
vils (Sequeira, Lanteri, Scataglini, Confalonieri, & Farrell, 2000) from 
the Galapagos Islands that were all estimated to be considerably older 
than the current archipelago (Parent, Caccone, & Petren, 2008). These 
discrepancies could be due to (a) species clades being older than the 
islands to which they are endemic (e.g., the colonization took place via 
stepping stones between islands that no longer exist (Renner, Strijk, 
Strasberg, & Thebaud, 2010)) or (b) geological age estimates for the is-
lands not accurately reflecting the time span available for colonization.

The Galapagos Islands, a volcanic archipelago located ~900 km off 
the coast of Ecuador, are a celebrated model of island systems, with 
notable examples of adaptive radiations (Parent et al., 2008). Endemic 
reptiles, in particular, are prime examples for studying the colonization 

history of oceanic islands given their slow metabolic rates, as well 
as their resilience to desiccation and osmotic stress. Together, these 
characteristics have been considered pre-adaptations for the suc-
cessful colonization of new terrestrial habitats via overseas disper-
sal (Hawlitschek et al., 2017). Galapagos giant tortoises (Chelonoidis, 
Fitzinger 1835) are flagship species for ongoing restoration efforts 
in the archipelago (Benitez-Capistros, Huge, Dahdouh-Guebas, & 
Koedam, 2016), not only as iconic representatives of the endemic bio-
diversity at risk, but also due to their function as native mega-herbi-
vores, crucial for maintaining ecosystem health (Blake, Guezou, Deem, 
Yackulic, & Cabrera,  2015; Gibbs, Sterling, & Zabala,  2010). These 
long-lived reptiles are considered the largest living ectothermic terres-
trial vertebrates, and include 14 species, with a single species per is-
land except for Santa Cruz, that hosts two species, and Isabela, which 
has a different endemic species associated with each of its five major 
volcanoes (Rhodin et al., 2017) (Figure 1). In addition to the 14 named 
species, the extinct population from Santa Fé probably belonged to 
a distinct, still undescribed, species (Poulakakis, Russello, Geist, & 
Caccone, 2012).

Since first being discovered, human activities have dramatically 
altered ecosystems in the Galapagos Islands (Guezou et  al.,  2010; 
Phillips, Wiedenfeld, & Snell,  2012). Over the past three centuries, 
harvesting for food and oil by whalers, sealers and buccaneers, and 
predation and/or competition with non-native species has contrib-
uted to the extinction of three species of Galapagos giant tortoise (one 
more is possibly extinct) and dramatic declines of the others (Harper 
& Carrion, 2011; Jiménez-Uzcátegui et al., 2008; Townsend, 1925). All 
Galapagos giant tortoises are listed in the IUCN Red List of endan-
gered species (IUCN, 2020). The extinct species include Chelonoidis 
abingdonii (Günther, 1877) and Chelonoidis niger (Quoy and Gaimard, 
1824b) from the islands of Pinta and Floreana, respectively, and the un-
described, but genetically distinct, lineage from Santa Fé (Poulakakis 
et al., 2012). Among the extant species, three are listed as vulnera-
ble (Chelonoidis becki (Rothschild, 1901), Chelonoidis vandenburghi 

F I G U R E  1   Distribution of tortoises 
among Galapagos Islands (Chelonoidis 
sp.). Shaded islands indicate the presence 
of extant tortoise populations. Extinct 
species are noted with †, and nearly 
extinct with asterisk (*)
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(DeSola, 1930), and Chelonoidis duncanensis (Pritchard, 1996)), three 
as endangered (Chelonoidis vicina  (Günther, 1875a), Chelonoidis cha-
thamensis (Van Denburgh, 1907), and Chelonoidis microphyes (Günther, 
1875)), and six as critically endangered (Chelonoidis guntheri  (Baur, 
1889), Chelonoidis hoodensis  (Van Denburgh, 1907), Chelonoidis 
donfaustoi  (Poulakakis, Edwards,  Caccone, 2015), Chelonoidis por-
teri (Rothschild, 1903), Chelonoidis darwini (Van Denburgh, 1907), and 
Chelonoidis phantasticus (Van Denburgh, 1907) [possibly extinct]). To 
protect these species and others, concerted efforts are being made 
including restoring habitats in the Galapagos (Campbell, Donlan, Cruz, 
& Carrion,  2004; Hamann,  1993; Harper & Carrion,  2011), captive 
breeding and repatriation of native species (e.g., Fabiani et al., 2011; 
Jensen, Edwards, et al., 2018; Milinkovitch et  al.,  2004; Quinzin 
et al., 2019), and introducing closely related species to islands where 
the native one has been extirpated (e.g., releasing Española tortoises 
on Santa Fé; Tapia et al., 2016).

Mitochondrial DNA (mtDNA) has a long history of use for phylo-
genetic and phylogeographic studies (Avise, Giblin-Davidson, Laerm, 
Patton, & Lansman, 1979; Avise, Lansman, & Shade, 1979; Moritz, 
Dowling, & Brown, 1987), especially for studies of recently diverged 
lineages or rapid radiations (Moore, 1995). Traditionally, such analy-
ses were done with one or a few mtDNA genes, for example, cyto-
chrome oxidase 1 (cox1) (Hebert, Ratnasingham, & deWaard, 2003). 
However, advances in high-throughput sequencing technologies 
coupled with novel bioinformatic methods for mtDNA genome re-
construction (Hahn, Bachmann, & Chevreux, 2013; Machado, Lyra, 
& Grant,  2016; Miller, Malenfant, Moore, & Coltman,  2012) have 
enabled full mitogenome analyses that increase phylogenetic res-
olution compared to those based on single genes (Gibb et al., 2016; 
Morin et al., 2010).

Previous phylogenetic studies of Galapagos giant tortoises have 
largely relied on single or multiple mtDNA regions (Beheregaray, Ciofi, 
Caccone, Gibbs, & Powell, 2003; Beheregaray et al., 2004; Caccone 
et  al.,  2002; Caccone, Gibbs, Ketmaier, Suatoni, & Powell,  1999; 
Poulakakis et  al.,  2008, 2012; Russello, Beheregaray, et al., 2007; 
Russello et  al.,  2005) and nuclear introns (Caccone et  al.,  2004). 
However, the phylogenetic relationships of these species are still 
partly unclear, likely due to the use of molecular character data 
largely restricted to a small portion of the mitogenome having insuf-
ficient power to resolve the rapid and recent radiation of the group 
(the oldest extant island dates to ~3 million years ago (Geist, 1996; 
Geist, Mcbirney, & Duncan,  1986; Geist, Snell, Snell, Goddard, & 
Kurz, 2014)). These limitations also apply to our ability to accurately 
estimate the timing and pattern of inter-island colonization, includ-
ing the relative roles of vicariance and dispersal (Beheregaray, Ciofi, 
Caccone, et al., 2003; Beheregaray et al., 2004; Caccone et al., 1999; 
Ciofi et al., 2006; Poulakakis et al., 2012).

To overcome these limitations, here we used complete or nearly 
complete mtDNA genomes of all extant species and two extinct 
ones (C. abingdonii from the island of Pinta and C. niger from the is-
land of Floreana) to reconstruct the phylogeny of Galapagos giant 
tortoises, infer processes underlying diversification, and estimate 
the timing of island colonization.

2  | MATERIAL S AND METHODS

2.1 | Data collection

Unique circumstances have allowed us to recover DNA for two ex-
tinct species from fresh tissue, as opposed to preserved material. 
For C.  abingdonii, we used blood samples collected from the last 
living tortoise from this species, a male named “Lonesome George” 
that died in 2012. For C. niger, we recovered the “extinct” mtDNA 
genome from a living tortoise. This was enabled by previous stud-
ies which identified mixed ancestry in tortoises living on northern 
Isabela Island, the likely outcome of relatively recent hybridization 
events between the extant endemic species, C. becki, and C. niger 
individuals endemic to Floreana Island, brought to those shores by 
humans (Garrick et al., 2012; Poulakakis et al., 2008). Thus, the in-
dividual used in this study to recover the C. niger mtDNA genome 
can be considered a “genomic archive,” negating the need for ancient 
DNA methods to recover the mtDNA genome of an extinct species. 
For the remaining species, DNA was extracted from blood stored in 
100 mM Tris/100 mM EDTA/2% SDS buffer by using the DNeasy 
Blood & Tissue Kit (QIAGEN). All blood samples were collected pre-
viously by A. Caccone, but remain the property of the Galapagos 
National Park, and are not deposited as vouchered specimens in a 
museum.

We constructed complete or nearly complete mtDNA genomes 
for 13 Galapagos giant tortoise species (Table 1), including 11 extant 
and two extinct species (C. niger and C. abingdonii), as well as almost 
complete mtDNA genomes for two of the three South American 
Chelonoidis species, the red-footed (Chelonoidis carbonarius (Spix, 
1824)) and yellow-footed (Chelonoidis denticulatus (Linnaeus, 1776)) 
tortoises, using both Ion Torrent and Sanger sequencing methods 
(for more details, Alignment S1, Tables  S1 and S2, and Figure  S1). 
These mtDNA genome sequences were combined with those avail-
able for Chelonoidis chilensis (Gray, 1870a), the closest living relative 
of the Galapagos giant tortoises (Caccone et  al.,  1999; Poulakakis 
et al., 2008), C. alburyonon (Franz and Franz, 2009), an extinct spe-
cies from the Bahamas, and two more distantly related African spe-
cies, Centrochelys sulcata (Miller, 1779) and Stigmochelys pardalis (Bell 
1828a) (Kehlmaier et al., 2017) (see Table 1).

Ion Torrent and Sanger sequences were imported to Geneious 
version 6.0.6 (https://www.genei​ous.com), aligned with MUSCLE 
(Edgar, 2004) and checked by eye for alignment quality. Sequences 
for the two red-footed tortoises were identical, so analyses for that 
taxon are based on a single sample.

2.2 | Sequence diversity analyses

For the phylogenetic and phylogeographic analyses, we created a 
dataset of 24 mitochondrial genome sequences, 15 sequences from 
the 11 extant and the two extinct species of Galapagos giant tortoises, 
and nine sequences from the six outgroup taxa (see Table 1). Previous 
mtDNA sequence data were obtained from Jensen, Miller, et al. (2018), 

https://www.geneious.com
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Kehlmaier et al. (2017), and Parham, Feldman, and Boore (2006). Due 
to the availability of previously published sequences, two species of 
Galapagos giant tortoises (C. vicina and C. duncanensis) are represented 
by two sequences in our dataset. All sequences were initially aligned 
in Geneious using MUSCLE (Edgar, 2004), with a final alignment length 
of 19,152 base pairs. Sequence divergences were estimated in MEGA7 
(Kumar, Stecher, & Tamura, 2016), using the p-distance model among 
the Galapagos giant tortoise species and the outgroup species.

2.3 | Phylogenetic analyses

We extracted individual gene regions based on annotations of the 
Pinta Island tortoise (C. abingdonii) mtDNA genome. These were then 
realigned with MUSCLE and concatenated into a super matrix for de-
termination of appropriate substitution models using Partitionfinder2 
(PF2) (Lanfear, Frandsen, Wright, Senfeld, & Calcott, 2017). The final 
super matrix of 16,437 bases included all 13 protein coding genes, two 
ribosomal RNAs, and 21 of 22 tRNAs (Table S3). We excluded tRNA-
Phe as partial sequences were present in only two of 17 taxa. PF2 was 
run with linked branch lengths using a greedy algorithm and specifying 
codon positions for each of the protein coding genes. Optimal models 
were chosen using the Bayesian information criterion.

Bayesian inference (BI) analyses were performed in MrBayes 
v.3.2.7 (Ronquist et  al.,  2012) conducting four runs and using eight 
sampling chains for each run based on the partition results and models 

revealed in PF2. Each chain ran for 2,000,000 generations, sampling 
every 1,000 generations. Several MCMC diagnostics were used to 
check for convergence and stationarity (the plot of the generation vs. 
the log probability of the data [the log likelihood values], the average 
standard deviation of split frequencies, the average potential scale 
reduction factor [PSRF], and the minimum value of estimated sample 
sizes [ESS]). The first 25% of trees were discarded as burn-in, as a mea-
sure to sample from the stationary distribution and avoid the possibility 
of including random, sub-optimal trees. A 50% majority rule consensus 
tree was then produced from the posterior distribution of trees, and 
the posterior probabilities were calculated as the percentage of sam-
ples recovering any particular clade. Posterior probabilities ≥0.95 indi-
cate statistically significant support (Huelsenbeck & Ronquist, 2001).

Maximum-likelihood (ML) analyses were performed using 
RAxML v.8.1.21 as implemented in raxmlGUI v.1.6 (Silvestro & 
Michalak, 2011) based on the partition results and models revealed 
in PF2. The best ML tree for each dataset was selected from 50 Ml 
searches, and the statistical confidence of the branches was further 
assessed based on 1,000 thorough bootstrap replicates (Felsenstein, 
1985).

2.4 | Molecular divergence dating

For the estimation of divergence times, we used three meth-
ods implemented in the programs StarBEAST2 (v.0.13.5; Ogilvie, 

TA B L E  1   List of Galapagos giant tortoise and outgroup taxa used in this study, along with geographic location, construction method, 
GenBank accession numbers (in parathneses, the corresponding code on the figures of phylogenetic trees is given), and references [p.s. 
present study, 1: Jensen, Miller, et al. (2018), 2: Kehlmaier et al. (2017), 3: Parham et al. (2006)]

Species Population Island Methodology Accession no Reference

C. abingdonii Pinta Pinta MITObim MT017690 p.s.

C. becki Puerto Bravo Isabela Sanger MT017693 p.s.

C. chathamensis San Cristóbal San Cristóbal Sanger MT017692 p.s.

C. darwini Santiago Santiago Sanger MT017694 p.s.

C. donfaustoi Cerro Fatal Santa Cruz Sanger MT017695 p.s.

C. niger Floreana Floreana Ion Torrent MT017691 p.s.

C. duncanensis Pinzón Pinzón Sanger MT017697 (1), MG912828 (2) p.s. & 1

C. guntheri Roca Union Isabela Sanger MT017700 p.s.

C. hoodensis Española Española Sanger MT017696 p.s.

C. microphyes Volcano Darwin Isabela Sanger MT017702 p.s.

C. porteri La Caseta Santa Cruz Sanger MT017698 p.s.

C. vandenburghi Volcano Alcedo Isabela Sanger MT017701 p.s.

C. vicina West Cerro Azul Isabela Sanger LT599486 (1), MT017699 (2) p.s. & 2

C. alburyorum Bahamas MITObim LT599482 2

C. chilensis South America MITObim LT599484 2

C. carbonarius South America Ion Torrent MT017704 (1), MT708501 (2), 
LT599483 (3)

p.s. & 2

C. denticulatus South America Ion Torrent LT599485 (1), MT017703 (2). p.s. & 2

Centrochelys sulcata Africa LT599487 2

Stigmochelys pardalis Africa DQ080041 3
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Bouckaert, & Drummond, 2017), MCMCTree incorporated in PAML 
(v.4.9; Yang, 2007), and MrBayes (Ronquist et al., 2012). Details of 
priors and specifications are given in Supplementary Material.

To estimate the divergence times, we used two calibration 
points: The first was the split between C. carbonarius and C. dentic-
ulatus, and the second was between C. chilensis and the Galapagos 
giant tortoises. Two recent studies suggest different times for these 
splits. The first one (Kehlmaier et al., 2017) places the split of C. car-
bonarius and C. denticulatus at 13.5–11.8 Mya and that of C. chilensis 
and the Galapagos giant tortoises at 11.95 Mya, while the second 
(Pereira, Sterli, Moreira, & Schrago, 2017) presents a much older split 
at 27 and 25 Mya, respectively. The large difference between these 
two studies could be due to the different approaches applied. The 
first study, Kehlmaier et al. (2017), was conducted with BEAST based 
on two calibration points using normal distribution priors, while the 
second, Pereira et al. (2017), was conducted under a Bayesian frame-
work in MCMCTree based on 22 calibration points. However, the 
use of a normal distribution is not always appropriate for calibrating 
a node using fossil information (see manual of BEAST). The afore-
mentioned data (2 vs. 22 calibration points and appropriateness of 
normal distribution for fossil information) suggest that the estima-
tions of the second study might be more accurate than the first one. 
Nevertheless, we applied both sets of calibration points and used 
AICM in Tracer to test which model (the model with the first set of 
calibration points from Kehlmaier et al. (2017) or the model with the 
second set of calibration points from Pereira et al. (2017)) better fit 
our data.

To evaluate the adherence of Galapagos giant tortoises to the 
island progression rule (i.e., a sequence of colonization from old 
to young islands) (Funk & Wagner, 1995), we used a general linear 
model in MS Excel (2016) to test for a relationship between clade age 
(calculated as the mean estimate of divergence within each island 
from the Bayesian phylogeny in starBEAST) and island age (Geist 
et al., 2014).

2.5 | Model-based biogeographical inference

To reconstruct the ancestral distribution of Galapagos giant tor-
toises species, we analyzed the Bayesian time calibrated tree 
by employing the R package “BioGeoBEARS” (Matzke,  2013a, 
2013b), using each island as a separate region. This analysis ena-
bles probabilistic inference of ancestral geographical ranges and 
statistical comparisons of different models of range expansion: 
dispersal extinction cladogenesis (DEC; Ree & Smith, 2008), dis-
persal vicariance analysis (DIVA; Ronquist,  1997), and Bayesian 
analysis of biogeography (BAYAREA; Landis, Matzke, Moore, & 
Huelsenbeck,  2013) using a time-calibrated species tree. These 
models were tested with and without a “jump dispersal” param-
eter J that allows for founder-event speciation (Templeton, 2008). 
This is an important parameter when modeling speciation on re-
mote oceanic islands (Matzke, 2014), as it allows the modeling of a 
long-distance colonization event of a small number of individuals 

founding a population that then becomes genetically isolated from 
the ancestral population, a phenomenon quite common in island 
systems. A total of six models were used (DEC-LIKE, DEC-LIKE+J, 
DIVA-LIKE, DIVA-LIKE+J, BAYAREA-LIKE, BAYAREA-LIKE+J; for 
more details, see manual of BioGeoBEARS (http://phylo.wikid​
ot.com/bioge​obears). The maximum clade credibility tree from 
BEAST2 was used as the input file to estimate the probabilities of 
ancestral ranges at internal nodes of the phylogeny, including only 
Galapagos giant tortoise species. Each individual was designated 
as present or absent on each of the eight islands. We performed 
model selection by comparing Akaike information criterion (AIC) 
values and AIC weights (AICw) on time-stratified models to deter-
mine the most appropriate model for the colonization history of 
Galapagos giant tortoises. In this analysis, the probability of dis-
persal and island occupancy was restricted by estimates of island 
emergence time (Geist, 1996; Geist et al., 2014). The oldest extant 
islands are estimated to have emerged ~4.0 Mya for San Cristóbal 
and 3.5 Mya for Española (Christie et al., 1992; Geist et al., 2014). 
Based on these dates and assuming that the initial founding of the 
Galapagos was a single event on one island (either Española or San 
Cristóbal, or on a proto-island when they were still a single island), 
we tested all possible scenarios for the patterns of colonization in 
Galapagos.

3  | RESULTS

The newly assembled Pinta Island tortoise (C. abingdonii) mitochon-
drial genome was circular and 16,449  bp long, constructed from 
88,837 mapped reads (average coverage of 537), and included a 
complete set of 13 protein coding genes, two rRNA genes, and 22 
tRNA genes. This annotated sequence has been made available on 
GenBank (Accession Number MT017690).

For all 11 extant Galapagos giant tortoise species, shotgun Sanger 
sequences were assembled into contiguous fragments of 15,647 or 
15,648  bp (GenBank accession numbers MT017692–MT017702) 
representing ~95% of the complete C. abingdonii genome. Relative to 
the genome from C. abingdonii, data obtained using Sanger sequenc-
ing did not contain 507 bp on the 5′ end of the genome and 281 bp 
on the 3′ end (Figure S1).

Ion Torrent sequencing for four samples (two C. carbonarius, one 
C. denticulatus, and one C. niger) produced 205,448 total reads with 
a mean read length of 144 bp. The number of reads per individual 
ranged from 12,406 (C.  niger) to 63,969 (one of the C.  carbonar-
ius individuals) with an average (±SD) of 46,836  ±  22,807 reads. 
Mean read depth was 576 ± 287 across all samples, with per sam-
ple averages ranging from 177 to 742. Through Sanger sequencing, 
we were able to assemble an additional ~4,800  bp to extend the 
mtDNA sequence for each of these four samples. Final aligned se-
quences (GenBank accession numbers MT017691, MT017703, and 
MT017704) ranged from 14,156 bp (C. niger) to 15,751 bp (C. car-
bonarius), representing ~86% to 95% of the complete mtDNA as 
compared with C. abingdonii.

http://phylo.wikidot.com/biogeobears
http://phylo.wikidot.com/biogeobears
info:ddbj-embl-genbank/MT017690
info:ddbj-embl-genbank/MT017692
info:ddbj-embl-genbank/MT017702
info:ddbj-embl-genbank/MT017691
info:ddbj-embl-genbank/MT017703
info:ddbj-embl-genbank/MT017704
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Average p-distances between the Galapagos giant tortoise spe-
cies and the outgroup species were 7.6%, 8.5%, 9.4%, and 10% for 
Chelonoidis alburyorum, C. chilensis, C. denticulatus, and C. carbonarius, 
respectively. The average difference among Galapagos giant tortoise 
sequences was 0.7%, whereas the pairwise p-distances ranged from 
0.08% to 1.11% among Galapagos giant tortoise species and from 
0.08% to 12.3% among all taxa, including the outgroups (Table S4).

3.1 | Phylogenetic trees

The best-fit partitioning scheme for each downstream analysis 
and the selected nucleotide substitution models are presented in 
Table S5. The ML and BI analyses resulted in a phylogenetic tree with 
lnL  =  −51,660.94 and lnL  =  −48,351.69 (harmonic mean), respec-
tively. All MCMC diagnostic metrics indicated that the iterations of BI 
analysis reached convergence and stationarity. The average standard 
deviation of split frequencies was smaller than 0.001 (when this value 
approaches zero, the tree samples are more similar), the plot of gen-
eration versus log-likelihood of the data had characteristic “white-
noise” morphology after burn-in. In addition, for all parameters, the 
PSRF values were near 1.00 (range 0.999–1.000) and ESS values 
were well over 200 for all parameters (minimum ESS was 347.2).

Tree topologies from the Bayesian and maximum-likelihood 
analyses were identical (Figure 2) and had high support values for 

all nodes (Bayesian posterior probabilities 1.00, bootstrap supports 
>80), with the exception of the sister group relationship of C. becki 
and C. darwini with C. abingdonii, C. hoodensis, C. chathamensis, and 
C. donfaustoi (bootstrap value 62).

Galapagos giant tortoises formed a single monophyletic group, 
with a sister group relationship with one of the three extant South 
American Chelonoidis species, the Chaco tortoises (C.  chilensis), 
with the extinct Bahamas species (C.  alburyorum), being the next 
closest relative, followed by a clade including the other two extant 
South American congeneric species (C. denticulatus and C. carbonar-
ius). Within the Galapagos giant tortoise clade, two major clusters 
(clades) were recognized. The first clade includes the species from 
the central, south, and west islands of the archipelago (Isabela, Santa 
Cruz, Floreana, and Pinzón). The second clade is divided into two 
subclades. One subclade includes the four species from the eastern, 
central, and northern Galapagos islands (Española, San Cristóbal, 
eastern Santa Cruz, and Pinta). The other subclade include the spe-
cies from the northwestern part of Galapagos (Santiago and north-
ern Isabela).

Finally, we note that the two C. vicina specimens are not clus-
tered together in the phylogenetic tree. This could be due to the 
fact that the second specimen (with Accession Number LT599486, 
Kehlmaier et  al.  (2017)) was taken from the Reptile Zoo Happ 
(Klagenfurt) in Austria and might have been incorrectly assigned 
to that species, whereas the C.  vicina mtDNA genome generated 

F I G U R E  2   Bayesian inference (BI) 
tree based on the complete mitochondrial 
genomes of Galapagos giant tortoise 
and outgroup taxa. The posterior 
probabilities for BI and bootstrap 
support for Maximum-likelihood (ML) are 
given on top of the branches. Asterisks 
indicate full support by both methods 
(ML/BI).The red section corresponds to 
Galapagos giant tortoises. Cross indicates 
extinct species. The drawings of the 
Galapagos giant tortoises were obtained 
with permission from Tropical Herping 
(Arteaga, Bustamante, Vieira, Tapia, & 
Guayasamin, 2019)

info:ddbj-embl-genbank/LT599486
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here was from a wild collected sample from the distribution area of 
C. vicina on Isabela, suggesting that this genealogical lineage corre-
sponds to that species.

3.2 | Molecular divergence dating and model-based 
biogeographical inference

According to the BEAST2, the model based on Pereira et al. (2017) 
estimated differentiation of Galapagos giant tortoises starting at 
1.54 Mya (Figure 3), while using the Kehlmaier et al. (2017) estimates, 
divergence started at 0.63 Mya (Figure S2). Model selection analysis 
in Tracer revealed a better score for the model based on calibration 
from Pereira et  al.  (2017) than those from Kehlmaier et  al.  (2017) 
(AICM = 96,832.90 [SE ± 0.242] and AICM = 96,745.64 [SE ± 0.52], 
respectively). Therefore, all the remaining analyses in BEAST2, 
MCMCTree and MrBayes were performed using only the calibration 
points from Pereira et al. (2017). In starBEAST analyses in BEAST2, 
the model selection analysis revealed that the birth–death model for 
speciation, linear with constant root populations, and relaxed lognor-
mal clock were the best among the 12 models compared (Table S6). 
Based on this model, the phylogenetic tree has a lnL = −48,352.26 
with high effective sample sizes for all parameters (posterior ESS 

values >200). In the MCMCTree, the analysis also resulted in high 
posterior ESS values (>2,000) for all parameters, and convergence 
was reached prior to 200,000 generations (lnL = −22.32). In MrBayes, 
the analysis resulted in a phylogenetic tree with lnL = −48,399.3. In 
all analyses, the estimation of divergence times with starBEAST, 
MCMCTree, and MrBayes led to similar ages, with, based on our 
samples, the start of the Galapagos giant tortoise radiation dated be-
tween 1.63 and 1.52 Mya (node G; Table 2).

BioGeoBEARS model comparisons showed that the DIVALIKE, 
DEC, and BAYAREA models with the +J parameter that allows 
for founder-event speciation are a better fit to our data than the 
same models without the +J parameter (Table 3). Among them, the 
DIVALIKE+J model was the best fit to the data and most likely to 
infer the correct ancestral range at each node. We also found a 
significant linear positive relationship between clade age and is-
land geological age, when using either minimum or maximum ages 
for island emergence (adjusted R2 >  .801, p <  .001 and R2 >  .855, 
p < .001, respectively; Figure S3).

Our data suggested that the history of the Galapagos giant tor-
toise radiation started in the early Pleistocene, at which point the 
oldest extant islands of San Cristóbal and Española were united as 
a single landmass. Thus, the biogeographic analysis recovered both 
islands as the most probable ancestral area for the Galapagos giant 

F I G U R E  3   The calibrated starBEAST2 species tree of the chronophylogenetic analysis based on the complete mitochondrial genome 
dataset. The red section corresponds to Galapagos giant tortoises. Cross indicates extinct species. The posterior probabilities are given 
above the branches. Cp1 and cp2 are the calibration points. The calculated node ages of the major nodes (A–R, see Table 3) are given below 
the branches. The respective credible intervals (95% HPD) and corresponding values from the other two methods of dating are given in 
Table 3. Note that in species tree analysis, all specimens of the same species have been collapsed in a single branch
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tortoises radiation (Figure 4). From this landmass, colonization oc-
curred ~1.54  Mya (1.52–1.63  Mya) to a united landmass of what 
is now Santa Cruz, Floreana, and Pinzón (Figure 4c). The descen-
dents of this ancestral lineage remained only on the island of Pinzón 
(C. duncanensis; E in Figure 4a,b), when the united landmass started 
to divide and the giant tortoises subsequently colonized the now 
separate island of Santa Cruz at 1.02 Mya, giving rise to C. porteri (D 
in Figure 4a,b). Afterward, two other colonization events from the 
island of Santa Cruz occurred: one to the island of Floreana (C. niger; 
0.55 Mya) and the other to southern Isabela at 0.41 Mya, which gave 
rise to the four southernmost species on Isabela (C. vicina, C. van-
denburghi, C. microphyes, and C. guntheri). Around 1.09 Mya, colo-
nization occurred from San Cristóbal to Santiago Island, leading to 

the lineage that gave rise C. darwini. Later, overseas dispersal from 
the now divided landmass of San Cristóbal occurred to give rise to 
C. hoodensis on Española (0.72–0.80 Mya) and C. donfaustoi on east-
ern Santa Cruz (0.33–0.47 Mya). This reconstruction suggests that 
the current species on Española is derived from a second coloni-
zation event, rather than from the ancestral lineage that colonized 
the united landmass of San Cristóbal and Española. Colonization oc-
curred from Española to Pinta at 0.25 Mya, which, although peculiar 
due to the geographic distance between two islands, is probably a 
natural dispersal, given the prevailing northwesterly currents (Pak & 
Zaneveld, 1973; Russello, Hyseni, et al., 2007). The most recent col-
onization was from Santiago to northern Isabela Island at 0.03 Mya, 
giving rise to C. becki.

TA B L E  2   The estimated divergence times for all splits (see Figure 3) based on the three different methods (starBEAST, MrBayes, and 
MCMCTree)

Split

Divergence times in Mya

starBEAST MrBayes MCMCTree

A 41.22 (39.19–43.49) 40.49 (40.01–42.42) 33.66 (40.01–42.42)

B 38.59 (36.74–40.27) 37.55 (34.82–39.75) 31.15 (34.82–39.75)

C 33.65 (31.99–35.15) 32.68 (30.96–35.32) 29.65 (30.96–35.32)

D 28.00 (27.81–28.20) 27.65 (25.76–29.57) 27.44 (25.76–29.57)

E 28.00 (26.44–29.32) 27.52 (25.49–29.85) 27.39 (25.49–29.85)

F 25.99 (25.80–26.18) 23.85 (22.13–26.78) 25.51 (22.13–26.78)

G 1.54 (1.27–1.79) 1.63 (1.37–1.81) 1.52 (0.83–3.02)

H 1.02 (0.75–1.28) 1.19 (0.99–1.36) 1.02 (0.52–2.05)

I 0.55 (0.36–0.73) 0.64 (0.52–0.76) 0.57 (0.28–1.14)

J 0.41 (0.24–0.57) 0.57 (0.46–0.69) 0.47 (0.23–0.96)

K 0.13 (0.07–0.20) 0.29 (0.22–0.36) 0.23 (0.11–0.48)

L 0.05 (0.00–0.09) 0.15 (0.10–0.20) 0.08 (0.02–0.19)

M 0.04 (0.00–0.11) 0.15 (0.10–0.21) 0.10 (0.03–0.25)

N 1.09 (0.80–1.37) 1.24 (0.98–1.39) 1.08 (0.55–2.04)

O 0.72 (0.53–0.91) 0.80 (0.66–0.98) 0.68 (0.32–1.37)

P 0.25 (0.06–0.43) 0.40 (0.30–0.52) 0.32 (0.10–0.76)

Q 0.33 (0.13–0.53) 0.47 (0.36–0.80) 0.35 (0.11–0.83)

R 0.03 (0.00–0.07) 0.14 (0.10–0.21) 0.08 (0.02–0.27)

Note: The calibration points are in bold.

TA B L E  3   Biogeographical model selection with and without founder-event speciation (+J) based on the lowest corrected Akaike 
information criterion (AICc) values

Initial founding   LnL
Number of 
parameters d e j AICc AICc_wt

San Cristóbal DIVALIKE+J −24.38 3 1.00E−12 1.00E−12 0.18 57.42 0.66

DEC+J −25.41 3 1.00E−12 1.00E−12 0.22 59.49 0.23

BAYAREALIKE+J −26.21 3 1.00E−07 1.00E−07 0.21 61.08 0.11

DIVALIKE −38.29 2 0.16 0.40 0 81.79 3.40E−06

DEC −40.74 2 0.17 0.72 0 86.68 2.90E−07

BAYAREALIKE −43.64 2 0.19 1.54 0 92.49 1.60E−08

Note: d, rate of dispersal; e, rate of extinction; j, relative probability of founder-event speciation at cladogenesis.
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4  | DISCUSSION

4.1 | MtDNA phylogenetic history

Despite years of study, DNA-based research, coupled with thor-
ough character and taxonomic sampling of both extant and ex-
tinct taxa, is still yielding insights into the phylogenetic history of 
the giant tortoises of the Galapagos. Using between 1,600- and 
5,300-bp-long mtDNA fragments and nearly complete taxon sam-
pling, several previous studies provided a phylogeny of this group 
(Caccone et  al.,  1999, 2002; Poulakakis et  al.,  2012). However, 
uncertainties remained as to the placement of several clades 
that were not strongly supported by all phylogenetic analyses. 
Here, we have generated the most robust mtDNA phylogeny of 
Galapagos giant tortoises to date by substantially increasing the 
amount of mitochondrial sequence data, enhancing taxon sam-
pling (all but two species: C. phantasticus [possibly extinct] from 
Fernandina and an undescribed species from Santa Fé [extinct]), 
and applying comprehensive analytical methods to reconstruct 
and evaluate trees.

In comparison with previous studies, there are several topolog-
ical differences and almost all nodes that were weakly supported 
in previous studies received strong statistical support (Caccone 
et al., 1999; Kehlmaier et al., 2017; Poulakakis et al., 2012) (Figure 2). 
Considering the topological differences, within the clade of the cen-
tral, south, and west islands of the archipelago (Isabela, Santa Cruz, 
Floreana, and Pinzón), C. duncanensis from the island of Pinzón is in a 

basal position relative to the other species as in previous studies, but 
C. porteri from western Santa Cruz, rather than extinct C. niger spe-
cies from Floreana, is the sister taxon to the four species from cen-
tral and southern Isabela, C. vicina, C. guntheri, C. vandenburghi, and 
C. microphyes. In the second clade, although the same grouping was 
recovered by previous mtDNA analyses, our results based on nearly 
complete mtDNA sequences provides, for the first time, relatively 
strong support for these clades according to both Bayesian (posterior 
probability = 1.00) and maximum-likelihood (bootstrap value = 62) 
methods. Our results also confirmed the genetic separation of the 
two species co-occurring on Santa Cruz island, one (C. porteri) living 
in the south and southwest of the island, and the other (C. donfaus-
toi) found on the eastern parts (Beheregaray, Ciofi, Caccone, et al., 
2003; Beheregaray et  al.,  2004; Poulakakis et  al.,  2015; Russello 
et al., 2005). These two species are linked through the deepest node 
within the Galapagos giant tortoises, suggesting independent colo-
nization events.

4.2 | Island progression rule and 
colonization scenario

Not only did the model based on the calibration points retrieved 
from Pereira et al. (2017) have a better fit than those of Kehlmaier 
et al.  (2017), the phylogeographic reconstruction was more plausi-
ble. Specifically, using the model of Kehlmaier et al. (2017), the colo-
nization history was stochastic, did not follow a palaeogeographic 

F I G U R E  4   (a) Results of ancestral area estimations in BioGeoBEARs with non-Galapagos taxa removed for clarity. The DIVALIKE+J 
reconstruction model, where ancestral lineages could disperse in any direction but distance among islands influenced colonization likelihood. 
Colors in the boxes highlighting each island in the map below to show current distributions and ancestral colonization patterns. (b) The 
biogeographic scenario generated based on the present BioGeoBEARs analysis, in which the differentiation of the lineages of Santa Cruz, 
Floreana, and Pinzón is the result of three dispresals and one extinction events (one dispersal from San Cristóbal/Española to the united 
landmass Santa Cruz, Floreana, and Pinzón, one extinction from Santa Cruz, Floreana, and two more dispersal events from Pinzón to 
Santa Cruz and Floreana, respectively). (c) The pageographic map of the Galapagos Islands in Middle Pleistocene (~1 Mya) (redrawn from 
Poulakakis et al. (2012)). Cross indicates extinct species
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pattern, and occurred at an exceptionally rapid pace, producing in 
~600,000  years at least 14 genetically distinct mtDNA lineages, 
ranging in divergence from 0.1% to 1.1% (average 0.7%; Table 2). On 
the other hand, using the model of Pereira et al. (2017), colonization 
events occur from older to younger islands and do not pre-date the 
island ages.

We found that the Galapagos giant tortoise species coalesced 
around 1.52–1.63 Mya, a timing that seems plausible, being almost 
half the age of the oldest islands in the archipelago (San Cristóbal 
[2.4–4.0  Mya] and Española [3.0–3.5  Mya]). This dating also gives 
ample opportunity for enough vegetation to develop on these is-
lands to sustain a tortoise population.

Our finding of within-island Galapagos giant tortoise assem-
blages resulting from a single colonization with subsequent radiation 
on most islands (excluding Isabela and Santa Cruz Islands for which 
two colonization events each occurred) confirms previous phylogeo-
graphic studies based on a smaller subset of mtDNA data (Poulakakis 
et  al.,  2012). The finding of a significant positive relationship be-
tween island clade and geological ages (Figure S3) implies that clades 
are colonizing and diversifying on islands after their emergence from 
the sea. Therefore, our phylogenetic and ancestral range recon-
struction suggests that Galapagos giant tortoises generally follow 
the island progression rule, as with other terrestrial groups (Parent 
& Crespi, 2006). Galapagos giant tortoises are not good swimmers, 
but they float (drifting on currents) and can survive without food 
or freshwater for up to 6  months (Pak & Zaneveld,  1973). Within 
the Galapagos, prevailing currents run in a northwesterly direction, 
which is also the approximate order of emergence of the islands from 
older to younger ones (Pak & Zaneveld, 1973). This means that or-
ganisms with passive dispersal and low active dispersal abilities, like 
the Galapagos giant tortoises, are likely to diverge according to the 
island progression rule and colonize remote geographic areas, such 
as oceanic islands, in sequence, while adapting and diversifying lo-
cally (Beheregaray et al., 2004; Caccone et al., 2002). A similar trend 
has been observed in several animal groups in Galapagos (Parent 
et al., 2008), including spiders (De Busschere et al., 2010), beetles 
(Sequeira et al., 2000), and marine iguanas (Steinfartz et al., 2009), as 
well as in other oceanic islands, such as Tahiti and Hawaii (Haponski, 
Lee, & Foighil, 2019; Holland & Hadfield, 2004).

The estimated times of coalescence for each island radiation 
are younger than the maximum (and in most cases minimum) date 
of island emergence (Geist et  al.,  2014) and the reconstruction of 
ancestral ranges inferred that ancestral species were present on 
contemporary subaerial islands. Based on the ancestral range recon-
struction, Galapagos giant tortoises started their diversification from 
the oldest islands of the archipelago, San Cristóbal and Española (see 
Figure 4), presumably living on a proto-island that eventually split to 
form the two islands. This is in agreement with a recent palaeogeo-
graphic visualization through simulated island configurations that 
showed these two islands were connected as recently as 2–1.5 Mya 
(Karnauskas, Mittelstaedt, & Murtugudde,  2017). This is true for 
other islands as well. The central Galapagos islands, which include 
the modern-day islands of Santa Cruz and Floreana and later on the 

islands of Santiago, Santa Cruz, Pinzón, Floreana, and Rabida at the 
end, were also united in a single landmass 2–1 Mya (Geist et al., 2014; 
Karnauskas et al., 2017).

The scenario deemed to be the most likely in the BioGeoBEARS 
analysis has four major discrepancies with the colonization pattern 
proposed in previous studies (Beheregaray et al., 2004; Poulakakis 
et al., 2012). The first one is that the ancestral reconstruction area 
was not San Cristóbal or Española, but a proto-island that later gave 
rise to San Cristóbal and Española. The second is that the species 
currently living on Española (C.  hoodensis) did not derive directly 
from the ancestral lineage living on this proto-island, but resulted 
from a more recent colonization event from San Cristóbal, well after 
the two islands separated. The third discrepancy has to do with the 
source of colonization of southern Isabela, which according to this 
study was western Santa Cruz rather than Floreana. The fourth dis-
crepancy involves the lineages on the islands of Santa Cruz, Pinzón, 
and Floreana, which were proposed in Poulakakis et  al.  (2012) to 
have arose through vicariance. In that scenario, the ancestral lin-
eage from a united landmass of Santa Cruz, Floreana, and Pinzón 
became the present-day lineages through vicariance with the isola-
tion of Pinzón Island (C. duncanensis; 1.02 Mya), and Floreana Island 
(C. niger; 0.55 Mya) from the remnant landmass of Santa Cruz (C. por-
teri). The scenario supported by our analyses here instead involves 
three dispersal events and one extinction event (one dispersal from 
San Cristóbal/Española to the united landmass Santa Cruz, Floreana, 
and Pinzón, one extinction from Santa Cruz, Floreana, and subse-
quent dispersal events from Pinzón to Santa Cruz, and then Santa 
Cruz to Floreana).

As with previous studies of this group, we found that Galapagos 
giant tortoises were highly divergent from extant mainland taxa, and 
within the radiation, all lineages were phylogenetically distinct from 
one another and, as such, should be treated as different conservation 
units. Among the Galapagos giant tortoises, divergence estimates 
were highly concordant between the full mtDNA genomes and pre-
vious estimates from the d-loop only (Garrick et al., 2015), but not 
between mtDNA genome p-distances and Fst estimates based on ge-
nome-wide SNPs (Miller et al., 2018). The lower correlation between 
divergence estimates from nuclear versus mitochondrial markers 
had previously been reported for this group (Miller et al., 2018).

Mitochondrial DNA markers have traditionally been consid-
ered well-suited for studies involving recently diverged lineages 
or rapid radiations (Moore,  1995), given the fast mutation rate 
relative to the nuclear genome, matrilineal inheritance, and in-
frequency of recombination of the mtDNA genome. However, in 
some cases, the mtDNA and nuclear genome have different inher-
itance patterns, which can lead to discordance between phyloge-
netic reconstructions obtained using these two genomes (Mallo & 
Posada, 2016). Such mito-nuclear discordance has been observed 
in numerous taxa and may be attributed to a variety of biogeo-
graphic or biological causes including selection on mitochondrial 
genes or geographic isolation followed by secondary contact. In 
addition to the faster rate of sorting of variation in the mtDNA 
compared to the nuclear genome, volcanic activity might cause 
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recurrent population bottlenecks that can influence biogeographic 
history and patterns of evolutionary divergence in lineages inhab-
iting young volcanic oceanic archipelagoes. This is thought to be 
the case for the Galapagos giant tortoise from the Volcano Alcedo 
(C. vandenburghi), where rapid mtDNA sorting and evolutionary di-
versification were thought to be influenced by a volcanic eruption 
(Beheregaray, Ciofi, Geist, et al., 2003). Thus, the mtDNA recon-
struction presented in this study, although statistically robust, may 
or may not reflect the evolutionary history of the entire radiation.

Therefore, it may be useful to produce a phylogenetic tree of the 
Galapagos giant tortoises based on nuclear markers for comparison. 
A first attempt toward this goal, using ~4,000 bp of nuclear DNA, 
failed to resolve phylogenetic relationships within the Galapagos 
giant tortoises clade, most likely because of the relatively small 
number of variable sites available in the analyzed fragments, despite 
being introns (Caccone et al., 2004). More recently, single nucleotide 
polymorphism (SNP)-based analyses have been used to infer pat-
terns of genetic differentiation and diversity within and among the 
extant species of Galapagos giant tortoises (Gaughran et al., 2018; 
Miller et  al.,  2018), but a direct comparison to this type of broad 
study is not possible because there is no comparable set of markers 
for the extinct taxa. Future analyses based on genome-wide SNPs 
from all species will provide added resolution and allow us to assess 
the degree to which the mtDNA and nuclear genome provide a con-
cordant reconstruction of the species history and to investigate any 
possible sources of discordance.

Overall, our reconstruction of Galapagos giant tortoises' diver-
sification across the islands includes a combination of dispersal and 
extinction events, confirming the role of dispersal in shaping island 
biogeography, as in many other oceanic systems (Benavides, Baum, 
Mcclellan, & Jack,  2007; Gentile et  al.,  2009; Parent et  al.,  2008; 
Rassmann, Tautz, Trillmich, & Gliddon,  1997; Sato et  al.,  2001; 
Schmitz, Cibois, & Landry,  2007; Sequeira, Lanteri, Albelo, 
Bhattacharya, & Sijapati,  2008). These findings stress the impor-
tance of not assuming that oceanic island systems fit a single model 
of diversification and the importance of taking into account the geo-
logical history and the biology of the study system. Such detailed 
considerations would not have been possible without the robust 
phylogeny produced by whole mitochondrial genomes.
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