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Abstract

Aim: During ecological speciation, reproductive isolation is predicted to evolve be-
tween populations adapted to different biotic or abiotic environments despite the
absence of geographical isolation. Regions of oceanographic heterogeneity (e.g. cur-
rent interfaces, habitat transition zones, ecological gradients) are strong candidates
for the presence of ecologically divergent natural selection, but their role in the radia-
tion of elasmobranch species is yet to be tested. We used an integrative framework
to assess the relative influence of oceanographic heterogeneity and geological his-
tory on the diversification of an elasmobranch genus.

Location: Gulf of California (GC) and Baja California Peninsula (BCP), Mexico.

Taxon: Shovelnose guitarfish (genus Pseudobatos).

Methods: We sampled 210 Pseudobatos specimens from four distinct but physically
connected oceanographic regions within the GC and in the BCP. We used genetic
(mtDNA sequences and AFLP genotypes) and environmental (six oceanographic
variables) datasets to clarify phylogenetic relationships, demographic history and
evolutionary divergence among populations, and to test for associations between
ecologically driven selection and reproductive isolation.

Results: Phylogenetic and population genetic evidence exposed five distinct lineages
of Pseudobatos in the region, including four cryptic lineages in the GC. Phylogeographic
analyses indicate a recent history of ecologically driven diversification associated
with the Gulf's young oceanographic environment and its four ecologically discrete
regions. This hypothesis was supported by seascape genetics, ecological niche mod-
elling and by tests of selection.

Main conclusions: We propose an adaptive radiation for the genus Pseudobatos
linked with habitat heterogeneity of the GC. Our study likely represents the first
assessment of an ecological radiation in the highly diverse elasmobranch group. It
capitalizes on the environmental and biogeographic settings of the GC to offer a
new perspective about the application of integrative approaches to study divergent

natural selection and diversification in the sea.
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1 | INTRODUCTION

Many species appear to evolve by the process of ‘ecological diver-
sification” in which reproductive isolation evolves between popula-
tions adapted to different environments or ecological niches (Nosil,
2012; Schluter, 2009; Via, 2009). Theoretical and empirical evidence
for ecological speciation has recently accumulated, challenging
the dominant paradigm of physical mechanisms of diversification
that underpin allopatric speciation (Beheregaray, Cooke, Chao, &
Landguth, 2015; Teske et al., 2019). Nevertheless, links between di-
versification and natural selection are not always evident, and the
role of ecological adaptation and divergence in the speciation pro-
cess remains controversial (Nosil, 2012; Seehausen et al., 2014).

In marine ecosystems, spatial population disjunctions that re-
sulted in speciation are often associated with vicariant events or
with oceanographic discontinuities (Bowen, Rocha, Toonen, & Karl,
2013; Gaither, Toonen, Robertson, Planes, & Bowen, 2010). Regions
of oceanographic heterogeneity (e.g. current interfaces, habitat tran-
sition zones, ecological gradients) are potentially strong candidates
for the presence of ecologically based divergent selection between
environments. Yet, the role of oceanographic heterogeneity as a
driver of ecological diversification has not been satisfactorily ad-
dressed (Grummer et al., 2019; Riginos, Crandall, Liggins, Bongaerts,
& Treml, 2016). Assessing geographical isolation and divergent nat-
ural selection in the ocean should benefit from studies of regional
biotas exposed to active geological history and complex oceanogra-
phy. In this context, the Gulf of California (GC) and the adjacent Baja
California Peninsula (BCP) provide an ideal study region. The geomor-
phological history of the Gulf has been particularly dynamic (Dolby,
Bennett, Lira-Noriega, Wilder, & Munguia-Vega, 2015; Murphy &
Aguirre-Leon, 2002; Umhoefer et al., 2018), and its current oceano-
graphic conditions show high temporal and spatial variability (Ortega,
AIavarez-Borrego, Arriaga, Renner, & Bridge, 2010). The processes
underpinning the formation of the GC and the BCP are thought to
have started ~12 million years ago (Mya), with the detachment of a
proto-peninsula from the mainland and the formation of the south-
ernmost GC (Dolby et al., 2015; Umhoefer et al., 2018). Tectonic
activity transported the proto-peninsula and a volcanic archipelago
300 km north-west, allowing the flood of the northern GC ~6 Mya.
At that time, the southernmost part of the GC was connected to
the Pacific Ocean by seaways between islands. By ~3 Mya emerg-
ing land attached these islands and the proto-peninsula, closing the
seaways and forming the BCP (Dolby et al., 2015; Murphy & Aguirre-
Leon, 2002). In spite of these key events between ~6 and 3 Mya, the
Colorado river delta established 4.5 Mya but continued to experience
smaller fluctuation after that time (Dorsey, O'Connell, McDougall, &
Homan, 2018); the Ballenas Channel formation was completed only
~2 Mya (Nagy & Stock, 2000); and recent volcanic activity and over-
riding plate uplifts changed dramatically the south-west coast of BCP
~2-1 Mya (Garcia Sanchez et al., 2019; Mark, Chew, & Gupta, 2017,
Sutherland et al., 2012). This combination of older and younger events
was integral to the recent (i.e. Pleistocene) establishment of four

oceanographic regions inside the GC, which are physically connected

but have ecologically distinctive features (Figures 1 and 2d; Lluch-
Cota et al., 2007; Ortega et al., 2010). Briefly, the open gulf (OG) is
largely influenced by oceanic waters with relatively low productivity
(< 0.6 mg Cla/m®) and small annual variation in temperature (22-30°C).
The lower gulf (LG) has intermediate productivity (< 1.5 mg Cla/m°)
and more variable thermodynamics (18-32°C). The islands region (I1G)
has channels that are over 500 m deep and is characterized by strong
tidal-mix upwelling that maintain high productivity (> 3 mg Cla/m®)
and low annual temperatures (11-22°C). The upper gulf (UG) has shal-
low waters (average < 100 m), high salinity (up to 40%.), large tem-
perature variation (9-38°C), high productivity (> 2.5 mg Cla/m°) and
large tidal ranges (> 6 m; Lluch-Cota et al., 2007; Ortega et al., 2010).
Previous genetic studies of marine organisms from the GC-BCP have
mainly focused on vicariant biogeography (Bernardi, 2014; Castillo-
Paez et al., 2014; Riginos, 2005; Sandoval-Castillo & Rocha-Olivares,
2011; Sandoval-Castillo, Rocha-Olivares, Villavicencio-Garayzar, &
Balart, 2004), with few exceptions (e.g. Garcia-De-Leon et al., 2018;
Sandoval-Castillo & Beheregaray, 2015).

Allopatric speciation does not fully account for the diversity of
sharks and rays because elasmobranchs show relatively moderate to
high potential for dispersal (Compagno, 1990; Speed, Field, Meekan, &
Bradshaw, 2010), which often translates to high gene flow among lo-
calities. Few studies have suggested ecological diversification between
pairs of elasmobranch species (Griffiths et al., 2010; Walter et al., 2017).
However, to the best of our knowledge, an ecological radiation has so
far not been described for any elasmobranch. Elasmobranchs are an
evolutionary success story, having shown long-term diversity, adap-
tive radiations and sophisticated morphological, ecological and be-
havioural specializations (Compagno, 1990; Dean, Wilga, & Summers,
2005; Musick, Harbin, & Compagno, 2004; Sorenson, Santini, & Alfaro,
2014). With around 1,000 species, elasmobranchs are the second
most diverse group of vertebrates in the oceans (Compagno, 2005;
Last et al., 2016). This high species diversity is most likely underesti-
mated because of their highly conserved morphology and lack of ex-
tensive taxonomic studies (Ebert & Compagno, 2007; Last, 2007). One
such example is the guitarfish family Rhinobatidae; one of the oldest
families of modern elasmobranchs with around 31 species (Last et al.,
2016). Guitarfishes generally show high levels of morphological sta-
sis, few diagnostic characters and limited interspecific morphological
differentiation (Cappetta, Ginter, & Hampe, 1987; Last et al., 2016;
Randall & Compagno, 1995), making it particularly difficult to delineate
divergent lineages. The taxonomy of Rhinobatidae in the GC-BCP re-
gion is confusing, but three species of the genus Pseudobatos are cur-
rently accepted: P. glaucostigmus (speckled guitarfish), P. leucorhynchus
(whitenose guitarfish) and P. productus (shovelnose guitarfish) (Last
et al., 2016). However, Sandoval-Castillo et al. (2004) reported two
cryptic allopatric mitochondrial DNA (mtDNA\) lineages of P. productus,
one distributed along the GC, and one along the Pacific Coast (PC) of
the BCP. Both the recognized and cryptic species of Pseudobatos span
a vast area in the GC and in the BCP with complex oceanography. As
such, they offer an ideal opportunity to assess stages of speciation and
the relative roles of vicariant biogeography and natural selection in the

formation of elasmobranch species.
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FIGURE 1 The Gulf of California (GC)

and the Baja California Peninsula (BCP) in
Mexico, showing the 16 sampling sites for
Pseudobatos. Study regions (colour coded)

=z
are the Pacific Coast (PC) and the four 8
bioregions inside the Gulf: the upper gulf 8
(UG), the islands region (IG), the lower gulf
(LG) and the open gulf (OG). Table indicate
the number of samples collected per site
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Here, we used an analytical framework that integrates phylo-
genetics, phylogeography, genome scans and environmental mod-
elling to assess the influence of geomorphological history and
oceanographic heterogeneity on the diversification of Pseudobatos
from the GC-BCP region. First, genetic divergence, migration
rates, reproductive isolation and the delineation of cryptic lineages
were assessed with phylogenetic and population genetic methods.
Coalescent-based phylogeographic simulations were then con-
ducted to test the fit of the genetic data to population histories pre-
dicted by competing evolutionary hypotheses. The latter is needed
because ecological speciation usually requires a study system in
which the existence of a dominant allopatric phase is unlikely in
the context of evolutionary history (Endler, 1982). Finally, analyses
based on seascape genetics, ecological niche modelling and tests
for selection were used to assess oceanographic, ecological and
geographical factors underpinning divergence. We predict that our
integrative framework will detect associations between genetic and
environmental divergence while accounting for the effects of geo-
graphical distance and historical biogeography (sensu, Beheregaray
etal.,, 2015). We hypothesize that the Pseudobatos lineages from the
GC-BCP have a recent history of ecologically driven diversification
linked to oceanographically defined regions. This study capitalizes
on the environmental and biogeographic settings of the GC-BCP to
apply integrative genetic-based methods to study divergent natural

selection and diversification in elasmobranchs.

2 | MATERIALS AND METHODS
2.1 | Sampling

Muscle tissue of 210 Pseudobatos were collected from 16 legal artisa-

nal fisheries landing sites, covering the oceanographic bioregions of

110°0'0"W 105°0'0"W

the GC and the PC of the peninsula (Figure 1). These were identified in
the field as shovelnose (P. productus; n = 189) and as speckled guitar-
fish (P. glaucostigmus [Pg]; n = 21). Whitenose guitarfish (P. leucorhyn-
chus) from the Gulf of Tehuantepec (~1,400 km south of the GC) and
Brazilian guitarfish (P. horkelii) from Brazil were included as outgroups.
Our sample includes all recognized taxa of Pseudobatos in the GC.

2.2 | DNA analysis

We used a salting out protocol (Sunnucks & Hale, 1996) to extract
genomic DNA. From 199 samples (178 shovelnose and 21 speckled gui-
tarfish, Table S2), approximately 800 bp of the mtDNA control region
(mtCR) was sequenced following Sandoval-Castillo and Beheregaray
(2015). Nuclear data were generated for 183 samples (169 shovelnose
and 14 speckled guitarfish, Table S2) using a modified protocol of ampli-
fied fragment length polymorphism (AFLPs; Zenger, Stow, Peddemors,
Briscoe, & Harcourt, 2006) and loci determined using AFLPscore 1.4
(Whitlock, Hipperson, Mannarelli, Butlin, & Burke, 2008; locus thresh-
old = 25%, phenotype-calling relative threshold = 10%). Error rate was
assessed by running 24 samples twice from the DNA extraction step
and using a mismatch error rate analysis in AFLPscore. Monomorphic
loci (< 5% or > 95% all individuals) were excluded.

2.3 | Oceanographic dataset

Average annual oceanographic data of six key variables (tem-
perature, salinity, oxygen saturation, nutrients concentration,
total chlorophyll and bathymetry) for the last 100 years were
obtained from the NOAA World Ocean Data Base (Boyer et al.,
2018). Gridded maps at ~10 km? resolution of each oceano-

graphic variable were generated using the DIVA algorithm in
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FIGURE 2 Maps of the Gulf of California and Baja California Peninsula showing the putative vicariant events (a-c), the current bioregions
(d), and the geographical distribution of inferred Pseudobatos lineages (e). Baja California Peninsula (BCP), Southern Peninsula Seaway (SPS),
Middle Peninsula Seaway (MPS), upper gulf (UG), islands region (IG), lower gulf (LG), open gulf (OG), Pacific Coast (PC), P. glaucostigmus (Pg),
million years ago (Mya). The bottom diagram shows eleven phylogeographic hypotheses for diversification of Pseudobatos from the GC-BCP
tested using approximate Bayesian computation (ABC) in DIYABC 2.1. Hypotheses include vicariance and ecological radiation events (H1a;
H1b; Hic), vicariant events only (H2a; H2b; H2c; H2d; H4a; H4b), and ecological radiation only (H3a; H3b)

ODV.5.2 (Schlitzer, 2015). These cover a quadrant from 103°
to 117°W and 19° to 33°N that includes all sampling localities
(Figure 1).

2.4 | Statistical analyses
2.4.1 | Phylogenetic and genealogical analyses

jModelTest 2 (Darriba, Taboada, Doallo, & Posada, 2012) was
used to select the most appropriate substitution model for
the mtCR dataset based on Bayesian information criterion.
Phylogenetic analysis was performed using Bayesian inference
in MrBayes 3.2 (Ronquist et al., 2012; replicates = 3, chains = 8,
generations = 10,000,000, sampling every 100 generations, burn-
in = 1,000,000). Genealogical relationships among mtCR haplo-
types were inferred in TCS 1.2 (Clement, Posada, & Crandall,
2000:; confidence connection=>95%).

2.4.2 | Genetic structure and demographic history

Genetic differentiation among localities was assessed by pair-
wise @ (MtCR) in Arlequin 3.5 (Excoffier & Lischer, 2010) and
Fs; (AFLP) in AFLP-SURV 1.0 (Vekemans, 2002). Hierarchical
population structure was tested for both the mtDNA and AFLP

datasets (see Supporting Information) using an AMOVA in
Arlequin. Here genetic variation was partitioned within sampled
localities, among localities, and among mtCR lineages (PC, UG,
IG, LG and Pg). Genetic structure and the most likely number of
populations was assessed for the AFLP data with an approach for
dominant markers in Structure 2.3.4 (Hubisz, Falush, Stephens, &
Pritchard, 2009; admixture model with correlated alleles, burn-
in = 100,000 iterations = 1,000,000). Historical demographic
parameters (0 as population sizes, and M as gene flow between
populations) were estimated for the mtDNA data based on a full
migration model using Migrate-N 3.6 (Beerli, 2006; slice proposal
distribution, exponential with windows prior distribution, long
chain = 1, burn-in = 10,000, run = 1,00,000, replicates = 7, static
heating with five chains = 1, 1.5, 3, 6 and 100). Parameters were
scaled by a mutation rate u = 1.3 x 107% based on an average
substitution of 8 x 107% substitutions per site per million years
(Duncan, Martin, Bowen, & De Couet, 2006) and generation
time of 16 years (Villavicencio-Garayzar, 1993). Finally, the time
to the most recent common ancestor was inferred for all phylo-
groups (i.e. major mtDNA lineages) using BEAST 1.7 (Drummond,
Suchard, Xie, & Rambaut, 2012; standard priors, burn-in = 1,000,
generations = 10,000,000, replicates = 5). Since a calibrated
molecular clock is not available for Pseudobatos, we applied a
widely used clock for sharks of 0.8% per million years (Corrigan,
Huveneers, Schwartz, Harcourt, & Beheregaray, 2008; Dudgeon
etal.,, 2012).
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2.4.3 | Detection of natural selection

Outlier AFLP loci under divergent selection were identified using
two Bayesian F;-outlier approaches. First, we used Mcheza (Antao
& Beaumont, 2011) to run pairwise comparisons between phylo-
groups. For each analysis null distributions of F.; were generated
using 50,000 simulations, a 8 of 0.01, and a confidence interval of
99%. Loci identified in more than two comparisons were consid-
ered outliers (Campbell & Bernatchez, 2004). BayeScan 2.1 (Foll &
Gaggiotti, 2008) was also used to calculate F¢; coefficients and de-
compose them into a locus-specific component () and a population-
specific component (B). Only those loci with very strong evidence
for selection (log10BF > 1.5) were considered (Jeffreys, 1961). To
further reduce false positives, only loci classified as outliers by both
methods were considered as candidate loci for selection.

2.4.4 | Ecological isolation

Environmental distances were estimated as the difference of each
oceanographic variable between sampling sites. Geographical dis-
tances between sites were measured along the coastline using
GoogleEarth (2017). We then used SAM (Joost, Kalbermatten, &
Bonin, 2008) to calculate multiple univariate logistic regressions
to test for association between allele frequency of each of the 541
AFLPs and the five environmental variables. Associations were con-
sidered significant only if both G and Wald tests rejected the no-
association model at a 2.3E-9 threshold. In addition, the contribution
of geographical and environmental factors to inferred genetic pat-
terns, and the correlations between genetic structure (i.e. measured
by mtDNA & and AFLP F¢;) and geographical and environmental
distances were assessed using partial Mantel tests in IBSWS 3.23
(Jensen, Bohonak, & Kelley, 2005; permutation = 10,000). We also
used a partial redundancy analysis (RDA) to assess genotype-envi-
ronmental associations between the five oceanographic variables
and the allele frequencies of the candidate loci. The best model was
selected using a backwards-stepwise selection procedure. Then the
significance of the final model and each environmental variable was
assessed by 1,000 ANOVA permutations. To determine the extent
of ecological overlapping between taxa (i.e. phylogroups), predic-
tive distribution models were generated using maximum entropy
in MaxEnt 3.4.1 (Phillips, Anderson, Dudik, Schapire, & Blair, 2017).
This predicts taxa environmental suitability of each cell in a gridded
map. Two or three commercial fisheries sites per locality (9-15 per
taxon) were used as the taxa presence dataset, and gridded maps
of six oceanographic variables were used as environmental layers.
A receiver operating characteristic (ROC) analysis was performed
and the area under the ROC curve (AUC) was used to evaluate the
discrimination power of the predicted distribution (Phillips & Dudik,
2008). In addition, symmetric extremal dependence indices (SEDIs)
were calculated using the R package Maxentoors 1.1.0 (Scavetta,
2019). Niche overlap among phylogroups was quantified using niche

similarity indices (I) and tested using identity tests in ‘ENMTools’

Journal of
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0.2 (Warren, Glor, & Turelli, 2010). For the identity test, a null dis-
tribution of overlapping score between taxa was generated based
on 1,000 occurrence point pseudoreplicates per taxon. Niche iden-

tity was rejected when the actual observed I index was significantly

lower than that expected for the pseudo-replicated dataset.

2.4.5 | Assessing alternative scenarios of
evolutionary divergence

DIYABC 2.1.4 (Cornuet et al., 2014) was used to test competing phy-
logeographic hypotheses (Figure 2). Results from Migrate-N were
used to set each extant population size. Major historical geological
events were used to set putative splitting times: (a) the end of the
formation of the gulf 6 Mya (Oskin & Stock, 2003), (b) the open-
ing of a seaway crossing Baja California in the southern part of the
gulf 3 Mya (Helenes & Carreno, 1999), and (c) the opening of a puta-
tive seaway at mid-peninsula 3 Mya (Ochoa-Landin, Ruiz, Calmus,
Pérez-Segura, & Escandon, 2000) or 1 Mya (Murphy & Aguirre-Leon,
2002). We tested 11 hypotheses (Figure 2c): three that include vi-
cariance and ecological radiation events (H1a; H1b; Hic), six that
consider only the vicariant events (H2a; H2b; H2c;H2d; H4a; H4b)
and two considering ecological radiation only (H3a; H3b) (details in
Supporting Information). For each evolutionary model, 1,000,000
datasets were simulated using the priors in Table S1. Subsequently,
60 summary statistics were calculated for each scenario and the em-
pirical dataset. The probability of each scenario was calculated using
logistic regression of simulated datasets against the linear discrimi-
nation components of the empirical data. We then calculate both

type | and Il error rates per scenario (see Supporting Information).

3 | RESULTS
3.1 | Genetic diversity and loci classification

Fifty-two mtCR haplotypes and 541 nuclear loci were resolved for
all samples. Haplotype diversity was moderate to high (0.551 to
0.952). All nuclear loci were polymorphic with expected heterozy-
gosity ranging from 0.313 to 0.407 (Table S2). Of the 541 nuclear
loci, 39 candidates for selection (7.2%) were detected by both outlier
methods (Mcheza detected 68 loci and BayeScan 44; Table S3).

3.2 | Cryptic genetic diversification of
Pseudobatos lineages

Nuclear and mitochondrial data provided strong evidence for five
lineages of Pseudobatos in the GC-BCP region. One lineage (Pg) cor-
responds to all organisms identified in the field as P. glaucostigmus.
Samples originally identified as P. productus comprised four discrete
lineages that show strong ecological differentiation. Each lineage

was found in a different oceanographically delimited ecological
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region, namely the UG, Islands (IG), PC and LG (Figure 2d,e). In con-
trast, the P. glaucostigmus lineage occurs in both the OG and in the
LG, in sympatry with the LG cryptic lineage of P. productus. The in-
ferred lineages comprise five moderately supported clades (> 0.78
Bayesian support), with four (LG, Pg, UG and PC-IG) being recipro-
cally monophyletic (Figure 3a). Phylogenetic subdivision is reflected
in strong genetic structure across the 16 sites (ntDNA & = 0.876,
p < .01; AFLP Fo; = 0.139, p < .01; &, = 0.282, p < .01). AMOVA
shows that molecular variation is best explained by differences be-
tween bioregions (mtDNA Der = 0.869, p < .01; AFLP & = 0.244,
p < .01; Table S4). Bayesian clustering analyses suggest heteroge-
neous genomic divergence: Neutral loci showed moderate differ-
entiation and substantial admixture between lineages; on the other
hand, the 39 AFLP candidate loci showed complete differentiation
and nil or very low admixture (Figure 3b; K = 5). Here, all individu-
als were allocated accurately to each mtCR lineage with very little
to no nuclear gene flow or introgression between them (Figure 3b).
This agrees with estimates of historical migration in which all pair-

wise migration parameters (m) from Migrate-N point to a higher

- (b)
0.1
(0.78/61) -
0.52Mya 3
©
2
(0.99/ 95) 2
1.36Mya B
Upper Gulf (UG) 3
g [
A=)
at 155 Pseudobatos I E
/ . 5
‘ 1.48Mya ] g
H wrom 12 Lower Gulf (LG)

probability distribution near zero (Table S5). Overall, the inferred
levels of genetic and genealogical differentiation suggest that the

five Pseudobatos lineages are mostly reproductively isolated.

3.3 | Hypothesis testing of an ecological radiation

Out of the 11 hypotheses assessed, DIYABC results supported with
high confidence the hypothesis of a single and recent ecological ra-
diation (H3a, p > .86; Figure 4; Table S7).

3.4 | Ecological isolation and niche modelling

There was statistical support for correlations between genetic dis-
tance and nutrient concentration, oxygen saturation, and bathym-
etry, even after controlling for the effect of geographical distance
(Table 1). Allele distributions of 57 (10.5%) of 541 AFLP loci were
significantly associated with at least one oceanographic variable

PC IG uG Pg LG

UG
AUC=0.98

». SEDI=0.97

FIGURE 3

AUC=0.98 %,
SEDI=0.98
-]

LG* IG
AUC=0.99

‘\ SEDI=0.97

PC
AUC=0.97
SEDI=0.98

(a) Phylogenetic relationships between Pseudobatos complex from the Gulf of California-Baja California Peninsula (GC-BCP)

region (coloured squares) based on a Bayesian analysis. Shown in the tree are posterior probabilities for each lineage in brackets and the
estimated time to the most recent common ancestor in millions of years. The P. leucorhynchus from Mexico and P. horkelii from Brazil were
used as outgroups. (b) Genetic groups of the Pseudobatos species complex from the GC-BCP identified with a Bayesian clustering method.
Analyses were conducted with 502 neutral AFLP loci (top) and with 39 candidate AFLP loci (bottom). (c) Ecological niche models for lineages
of Pseudobatos from the GC-BCP using six oceanographic data layers. MaxEnt suitability probability values are listed in a graded series.
Pacific Coast (PC), islands region (IG), upper gulf (UG), P. glaucostigmus (Pg), lower gulf (LG), area under the ROC curve (AUC) and symmetric

extremal dependence indices (SEDI)
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FIGURE 4 (a) Logistic regression
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TABLE 1 Correlations between
genetic differentiation and geographical
and ecological distances for lineages of
Pseudobatos from the Gulf of California
and Baja California Peninsula. Q values
(false discovery rate) are based on partial
Mantel tests of mitochondrial control
region (mtDNA), neutral AFLP loci
(AFLP) and AFLP loci including outliers
(AFLP Sel). Values highlighted in bold are

Geographical distance
Temperature
Salinity

Oxygen saturation

. Lo ) Nutrient
statistically significant at a false discovery utrients
rate of 5% Chlorophyll-a

ATemperature
Bathymetry

Bold indicates statistical significant value.

(Table S3; Figure S4). Furthermore, 26 of these loci were also candi-
date loci detected by both outlier analyses (Table S3), and environ-
mental variation explained 68.2% of the genetic variation present in
the candidate loci (p < .001; Figure S4).

Environmental niche modelling showed high entropy with nil to
moderate geographical overlap (Figure 3c). Niche identity was rejected
for all pairs of lineages, with moderate | index values, except for LG
versus Pg (Table S6). The latter lineages are sympatric and show high

niche overlap.

-10 -5 0 5 10
0
PCA1(58.9%)
Controlling by geographical
distance
mtDNA  AFLP AFLPSel mtDNA  AFLP AFLPSel
0.008 0.008 0.016
0.004 0.004 0.048 0.253 0.438 0.927
0.004 0.010 0.016 0.934 0.216 0.344
0.11 0.262 0.030 0.107 0.236 0.028
0.003 0.004 0.008 0.043 0.06 0.021
0.662 0.258 0.163 0.401 0.367 0.420
0.016 0.003 0.021 0.692 0.239 0.517
0.102 0.209 0.001 0.116 0.315 0.012
4 | DISCUSSION

Diversification in elasmobranchs has been traditionally associ-
ated with vicariant biogeographic history and dispersal limitations
(Dudgeon et al., 2012; Musick et al., 2004; Sandoval-Castillo, 2019).
Our work showcases the role of isolation by environment in gen-
erating and maintaining diversity in this group and suggests that
mobility might not hinder speciation in sharks and rays. This adds

to cumulative evidence of the importance of heterogeneous marine
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environments in shaping ecological and evolutionary divergences
in species with relatively moderate to high dispersal potential (e.g.
Pazmifo, Maes, Simpfendorfer, Salinas-de-Ledn, & van Herwerden,
2017; Sandoval-Castillo, Robinson, Hart, Strain, & Beheregaray,
2018; Teske, Sandoval-Castillo, Waters, & Beheregaray, 2017).

4.1 | Multiple cryptic species of Pseudobatos in the
Gulf of California and adjacent coast

A range of analytical methods based on mtDNA and nuclear data
provided strong evidence for five lineages of Pseudobatos in the
GC-BCP region, including four cryptic lineages within P. productus.
These show strong concordance with oceanographically delimited
ecological regions (Figure 2d,e). The UG lineage of P. productus ap-
pears more closely related to the morphologically distinct P. glau-
costigmus (Figure 3b). The other P. productus lineages (LG, PC and I1G)
are also highly divergent and show nil historical gene flow with other
Pseudobatos lineages from the region. It is conceivable that the LG
lineage might represent the spiny guitarfish P. spinosus, a taxon
described based on a single museum specimen (Ginther, 1870).
Although morphological data from three specimens suggest that P.
spinosus occurs in one locality from the LG (Castro-Aguirre & Pérez,
1996), this taxon has since been synonymized with P. productus
(Compagno, 2005). There are no described taxa or synonyms that
could be associated with the other cryptic lineages, but reproduc-
tive data suggest the existence of distinctive groups in the GC and
the PC (Romo-Curiel, Sosa-Nishizaki, Pérez-Jiménez, & Rodriguez-
Medrano, 2017; Villavicencio-Garayzar, 1993). Delimiting species
on the basis of genetic data can be controversial, but the phyloge-
netic distinction and levels of genetic differentiation depicted here,
in conjunction with results about niche partition and ecological di-
vergence, satisfy a number of different properties used to delineate
species. These include operational criteria used in species concepts
such as the biological (Dobzhansky, 1950; Mayr, 1942) and some
versions of the phylogenetic (Nelson & Platnick, 1981) concept.
Thus, a total of four cryptic lineages with likely different stages of
evolutionary separation are reported here for P. productus in the
GC-BCP region.

4.2 | Population history and hypothesis testing of
an ecological radiation

Our results suggest a combined impact of the BCP on initial isola-
tion of Pseudobatos lineages (PC vs. GC), followed by an ecological
radiation at around 1 Mya within the GC. Adaptive radiations are
prompted by ecological opportunities in scenarios where incipient
lineages are exposed to a wealth of evolutionarily accessible habi-
tats and resources (Kennedy et al., 2017; Losos, 2010; Pontarp &
Wiens, 2017). Historical environmental changes and associated
range expansions (e.g. Hewitt, 2000) have resulted in opportuni-

ties for adaptive divergence and niche specialization (Rodrigues &

Diniz-Filho, 2016). The establishment of the present-day heteroge-
neous environmental setting of the GC took place between ~2 and
1 Mya, after the final formation of the BCP and the main bathymetric
features of the GC (Garcia Sanchez et al., 2019; Mark et al., 2017;
Sutherland et al., 2012). We hypothesize that these events, in combi-
nation with the mid-Pleistocene transition (1.2-0.8 Mya; Chalk et al.,
2017), created ecological opportunities that likely promoted adap-
tive phenotypic differences between the lineages of Pseudobatos.
Despite the inferred strong genetic and ecological divergence (see
below), there are no known conspicuous adaptive traits in morphol-
ogy between Pseudobatos lineages from the GC (Méarquez-Farias,
2007; Romo-Curiel et al., 2017). Morphological stasis through dif-
ferent stages of cladogenesis has been reported for several groups
(Barley, White, Diesmos, & Brown, 2013; Beheregaray & Caccone,
2007; Bickford et al., 2007; Van Bocxlaer & Hunt, 2013), including
elasmobranchs (Ebert & Compagno, 2007; Jones et al., 2017; Last,
2007). One possibility is that rates of morphological diversification
in elasmobranchs are limited by the interaction of genetic and de-
velopmental constraints, as in some invertebrates (Appeltans et al.,
2012; Beldade, Koops, & Brakefield, 2002; Eldredge et al., 2005).
Alternatively, the apparent morphological stasis could be due to rela-
tively low niche differentiation within the Gulf (Cothran, Henderson,
Schmidenberg, & Relyea, 2013; Scriven, Whitehorn, Goulson, &
Tinsley, 2016). The adaptive traits involved in this radiation could
also have a physiological basis. In fact, a transcriptomic study of a
teleost group has shown that physiological traits linked to environ-
mental tolerances can be under strong selection and delimit sister
species ranges across climatic gradients (Sandoval-Castillo et al.,
2019). Understanding whether elasmobranch radiations respond by
becoming less morphologically diverse in scenarios of relatively lim-
ited ecological opportunity (e.g. Corrigan & Beheregaray, 2009), ei-
ther because of limited developmental paths or due to physiological
adaptations, requires currently unavailable phenotypic data. These
data, in conjunction with refined statistical approaches that directly
link the tempo of lineage diversification to the tempo of phenotypic
evolution (Moen & Morlon, 2014) are needed to assess the adap-
tive nature of the radiation and to conduct a taxonomic revision of
Pseudobatos.

4.3 | Ecological adaptation and speciation

The first requirement for ecological speciation is a source of diver-
gent selection, and some of the main triggers of divergent selection
are habitat structure or contrasting niches (Schluter, 2001). The pre-
dicted niche models provide support for ecological partition among
Pseudobatos lineages and are congruent with habitat heterogeneity and
structure proposed for the GC with respect to productivity, oxygen,
salinity, temperature, nutrients and bathymetry (Ortega et al., 2010).
We also detected contrasting patterns of differentiation between the
neutral and candidate loci datasets. Analyses with neutral data showed
relatively moderate admixture between Pseudobatos lineages and sug-

gests some level of gene flow. During early stages of speciation (as
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expected for Pseudobatos in the GC), gene flow can prevent the evolu-
tion of adaptive divergence (Via, 2012). However, substantial popula-
tion divergence and rapid speciation between ecologically dissimilar
populations in the face of ongoing gene flow has been reported for
several organisms (e.g. Beheregaray & Sunnucks, 2001; Bernatchez
et al., 2010; Cooke, Chao, & Beheregaray, 2012; Cooke, Landguth, &
Beheregaray, 2014; Sandoval-Castillo et al., 2018). On the other hand,
Pseudobatos lineages are completely differentiated based on candidate
loci (Figure 3b). Long-term reproductive isolation facilitates the accu-
mulation of neutral divergence that could be confused with genetic
differentiation associated with traits under selection (Rundle & Nosil,
2005; Via, 2009). However, the Bayesian analyses suggest a relatively
short time to the most recent common ancestor of Pseudobatos line-
ages (< 1.5 Mya; Figure 3a), a scenario consistent with the young age of
the heterogeneous environment of the GC. In addition, heterogeneous
genomic divergence has been associated with variation in recombina-
tion rates during the process of adaptive diversification with gene flow
(Roesti, Hendry, Salzburger, & Berner, 2012; Tine et al., 2014). Thus,
we consider that Pseudobatos in the GC-BCP exemplifies a radiation
involving divergent natural selection with gene flow.

Genetic-environmental associations provide additional evidence
for divergent selection that might eventuate in ecological specia-
tion (Bierne, Welch, Loire, Bonhomme, & David, 2011; Stucki et al.,
2017). Here, positive trends between genetic distance and three
oceanographic variables remained significant after controlling for
geographical distance (Table 1). Allele distributions of 26 of 39 out-
lier loci were significantly associated with at least one oceanographic
variable (Table S3; Figure S4). Moreover, the inferred ecological iso-
lation among Pseudobatos lineages (Figure 3c; Table S6) suggests an
important role of natural selection in their diversification. The differ-
ent oceanographic dynamics create sharp dissolved oxygen and nu-
trients concentration gradients between bioregions in the GC, with
some hypoxic and nearly anoxic areas in the LG and OG and highly
productive areas in the UG, IG and LG (Lluch-Cota et al., 2007). We
propose that the development of metabolic specializations associ-
ated with differences in oxygen concentration and diet along eco-
logically distinct bioregions influenced the radiation of Pseudobatos
in the GC. Oxygen consumption requirements differ between spe-
cies of elasmobranchs (Speers-Roesch et al., 2012), and low oxygen
saturation creates selective pressure for physiological adaptations
(Renshaw, Wise, & Dodd, 2010; Routley, Nilsson, & Renshaw, 2002).
Although nutrient concentration may not directly affect predators
such as elasmobranchs, this factor is strongly correlated with pri-
mary productivity, which in turn affects abundance and diversity of
prey (Korpinen, Jormalainen, & Pettay, 2010). In fact, a key feature of
the evolutionary success of elasmobranchs relates to their ecological
and anatomical feeding specializations that allowed them to radiate
into numerous niches (Ferguson, Higdon, Tallman, Fisk, & Hussey,
2014; Walter et al., 2017; Wilga, Motta, & Sanford, 2007).

The lack of conspicuous morphological differences among lin-
eages suggests that sexual selection might be unlikely. However,
divergent habitat preferences are known to generate reproductive

isolation if mating occurs in the preferred habitat (Rundle & Nosil,
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2005), which can be considered as a type of sexual selection (Oring
& Lank, 1982). Species of Pseudobatos, including P. productus, show
strong habitat preferences for reproduction (Marquez-Farias, 2007;
Villavicencio-Garayzar, 1993). These can be manifested as fidelity
of some individuals to mating locations (reproductive philopatry),
a driver of genetic structure in several elasmobranchs (Corrigan,
Huveneers, Stow, & Beheregaray, 2015; Portnoy & Heist, 2012;
Sandoval-Castillo & Beheregaray, 2015). For instance, for bonnet-
head sharks (Sphyrna tiburo), philopatry was suggested to facilitate
sorting of locally adaptive genetic variation among locations and
environments (Portnoy et al., 2015). Philopatric behaviour can be a
form of prezygotic sexual selection and that might contribute to the
patterns observed here (Nosil, Funk, & Ortiz-Barrientos, 2009). We
hypothesize that divergent habitat preferences for reproduction,
potentially linked to gradients in oxygen, nutrients and bathyme-
try, have influenced the evolution of reproductive isolation among
Pseudobatos lineages in the GC.

A limitation of our study is that genome scans were based on anon-
ymous AFLP dominant markers. Genome-wide marker panels, whole
genomes and transcriptomes can now be used to better delineate
barriers to gene flow, selection gradients and isolation by environ-
ment, and to identify gene regions and phenotypic traits involved in
adaptation (Grummer et al., 2019; Rellstab, Gugerli, Eckert, Hancock,
& Holderegger, 2015; Riginos et al., 2016; Sandoval-Castillo, 2019).
Regional-scale studies in sharks and rays should test for population
diversification across heterogeneous environments while controlling
for spatial genetic autocorrelation and vicariant biogeographic history
(Beheregaray et al., 2015). These surveys would also benefit from a
priori spatial delineation of adaptive phenotypes. Such studies are
expected to contribute substantially to integrative taxonomic efforts
(Dayrat, 2005) and to the conservation and management of elasmo-
branchs worldwide (Sandoval-Castillo, 2019).
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