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Kinship and reproductive condition 
correlate with affiliation patterns 
in female southern Australian 
bottlenose dolphins
fernando Diaz-Aguirre  1,2*, Guido J. parra1, Cecilia passadore  1 & Luciana Möller  1,2

Social relationships in female mammals are usually determined by an interplay among genetic, 
endogenous, social and ecological factors that ultimately affect their lifetime reproductive success. 
However, few studies have attempted to control for, and integrate these factors, hampering our 
understanding of drivers underlying female sociality. Here, we used generalized affiliation indices, 
combined with social networks, reproductive condition, and genetic data to investigate drivers of 
associations in female southern Australian bottlenose dolphins. Our analysis is based on photo-
identification and genetic data collected through systematic boat surveys over a two-year study period. 
female dolphins formed preferred associations and social clusters which ranged from overlapping 
to discrete home ranges. Furthermore, matrilineal kinship and biparental relatedness, as well as 
reproductive condition, correlated with the strength of female affiliations. In addition, relatedness 
for both genetic markers was also higher within than between social clusters. The predictability of 
resources in their embayment environment, and the availability of same-sex relatives in the population, 
may have favoured the formation of social bonds between genetically related females and those in 
similar reproductive condition. This study highlights the importance of genetic, endogenous, social and 
ecological factors in determining female sociality in coastal dolphins.

Female reproductive success in mammals is limited by the costs of lactation, gestation and caring for their young1, 
which in turn places constraints on their distribution and behaviour2,3. Female social relationships and their 
spatial distribution are therefore largely determined by ecological factors affecting the quantity and quality of 
food they can obtain, which together with predation risk, influences the chances of offspring survival4–6. In most 
mammals, females tend to remain in their natal areas and associate in groups, but in some species they are known 
to leave their natal ranges or social groups to avoid local competition for resources and mating opportunities7,8. 
Females living in groups may benefit from reduced risk of predation, assistance in infant rearing, increased access 
to food resources, increased reproductive output, survival and psychological wellbeing, as well as protection from 
sexual coercion by males4,8–13. For example, enhanced offspring survival has been demonstrated in female yellow 
baboons (Papio cynocephalus) that show close social bonds14,15. Similarly, social factors have been attributed to 
partially drive calving success in bottlenose dolphins (Tursiops cf. aduncus11), and assistance in protection from 
male coercion13,16.

If social relationships have a positive effect on fitness (e.g.11,14,15), kin selection theory predicts that social 
bonds should preferentially form among relatives17. In agreement to this, kinship has been demonstrated to be 
an important factor on the development and maintenance of social bonds in many female mammals (but see18), 
including African elephants (Loxodonta africana19), sperm whales (Physeter macrocephalus20), giraffes (Giraffa 
camelopardalis21), spotted hyenas (Crocuta crocuta22) and rhesus macaques (Macaca mulatta23,24). Associating 
with kin can provide fitness benefits, such as those related to cooperative foraging, increased growth rates, 
enhanced reproductive success, reduced aggression, protection from predators, and shared social and ecological 
knowledge11,14,25–29. Moreover, the kin structure of a group has implications for the evolution of social behaviour7. 
When female groups are composed of close relatives, groups are usually stable and cooperation among females is 
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common. In contrast, when groups are formed by non-related individuals, females usually move between social 
groups and cooperative behaviours are not as frequently observed (e.g.30,31). For example, the stability, quality and 
strength of social bonds in female yellow baboons correlate with maternal, and to a lesser extent, paternal related-
ness between individuals32,33. Similarly, it has been shown that social cohesion in female yellow-bellied marmots 
(Marmota flaviventris) is maintained through affiliative interactions among related individuals34.

More recently, Cantor and Farine35 demonstrated, using agent-based models, that simple foraging interac-
tions in competitive environments may give rise to the formation of stable social groups consisting of relatives. 
They showed that a process by which ‘individuals keep foraging with the same individuals if they were successful 
together in the past’ can lead to a stable social community structure and the emergence of kin-structure via fitness 
benefits or philopatry35. Their models, based on an energetic reward (food), provides an alternative evolutionary 
mechanism for the formation of stable, kin-based social groups similar to those observed in many vertebrates35.

Bottlenose dolphins (Tursiops spp.) live in societies with fission-fusion dynamics in which patterns of associ-
ations among individuals vary in strength and temporal stability36. Adult female bottlenose dolphins, apart from 
having a strong social bond with their calves for the first few years of the calf ’s life, usually form loose to mod-
erate associations with an extensive network of females of various ages and degrees of kinship37–41. In most well 
studied populations, females associate more closely within smaller clusters, called ‘bands’ or ‘cliques’. For exam-
ple, in Sarasota Bay, USA, and Port Stephens, Australia, female common bottlenose dolphins (T. truncatus) and 
Indo-Pacific bottlenose dolphins (T. aduncus), respectively, form clusters or stable subsets of frequent associates 
that share similar core areas within their home ranges37,39,42.

As reported in other mammals, kinship appears to play an important role in shaping female associations in 
bottlenose dolphins. In Shark Bay (Western Australia) and Port Stephens (eastern Australia), female association 
patterns were positively correlated with genetic relatedness39,40, although at social cluster level, kinship was not a 
determinant of membership within social clusters39. Shared reproductive state also seems to play a role in deline-
ating female associations in bottlenose dolphins37,38,43. Möller and Harcourt43 found that females in similar repro-
ductive state had higher association levels than females in different states, probably related to similar energetic 
and protection requirements for females with dependent calves. In inshore habitats, where resources are likely to 
be more predictable44, Möller45 suggested that delphinid female philopatry may be favoured because of the ben-
efits of familiarity with food resources. Furthermore, moderate social bonds may emerge between both kin and 
non-kin, although long-term social bonds may be more common between female kin45.

Here, we investigated the affiliation patterns and kinship relationships of female southern Australian bottle-
nose dolphins (Tursiops cf. australis46) inhabiting the inner area of Coffin Bay, South Australia, a heterogeneous 
inshore environment composed of small bays and channels. Coffin Bay is considered a stronghold for southern 
Australian bottlenose dolphins, with high densities of dolphins reported (1.57–1.70 dolphins/km2 47), similar 
male-to-female ratio of non-calf individuals (males = 46–52; females = 52–6047), and restricted ranging patterns 
by both sexes48. The majority of females in Coffin Bay had representative ranges (95% kernel ranges) smaller than 
15 km2 (mean representative range = 14.7, SD = 7.0 km2), and most (56%) showed ranging patterns restricted to a 
particular bay48. The Coffin Bay dolphin population is socially structured into two communities with discrete core 
ranges, where individuals from the same communities are on average more bi-parentally related than individuals 
from different communities49. Furthermore, males tend to form kin-based associations, which may enhance their 
access to females for mating50.

We used generalized affiliation indices (GAIs)51, and controlled for factors that could affect social analysis, 
such as home range overlap, gregariousness, and differences in the number of sightings among individuals51,52. 
Subsequently we combined these factors with social network techniques, and information on female’s repro-
ductive condition and genetic relatedness, to investigate the factors driving associations in female southern 
Australian bottlenose dolphins. Based on predictions for female bonding in coastal delphinids45, we expect that 
females in Coffin Bay will exhibit preferred associates and form social groups, and these will likely be based on 
kinship relationships due to the availability of close relatives within the two dolphin communities identified in 
this population. In addition, given the presence of adult females in different reproductive status in the population 
(with and without dependent calves), similarity in their reproductive condition is expected to correlate with the 
strength of their associations.

Results
A total of 152 boat surveys were conducted in Coffin Bay during the study period, with 967 dolphin groups 
sighted. A total of 657 groups were then selected based on criteria, which excluded identical groups resighted 
on the same day, and groups with less than 75% of dolphins identified. We included for the social analyses 55 
females with more than 11 sightings, which were sighted within 550 groups. Of these females, 50 were identified 
by genetic sexing, and 5 based on the presence of a dependent calf on more than 10 separate days.

Female affiliation patterns. We found a significant correlation between home range overlap, gregarious-
ness and the association indices; therefore these structural variables were controlled for when estimating female 
GAIs. The number of sightings per female dyad did not show a significant correlation with the association indices, 
and therefore it was not controlled for during GAIs estimation (Table 1). GAIs using deviance residuals ranged 
from −4.52 to 7.06 (mean = −0.41; SD = 1.53; n = 1485). We detected the presence of non-random companion-
ships among female dolphins using a permutation test (Observed SD = 0.1; Random SD = 0.08; p < 0.01), and 
using GAIs deviance residuals, 117 preferred, 1331 casual and 37 avoided female pairs were identified (Table 2).

The Newman’s modularity clustering technique revealed that the Coffin Bay female population was subdivided 
into seven social clusters (Qmax = 0.45; Fig. 1; Table 3), which ranged in size from two to twelve individuals 
(mean = 7.9; SD = 3.63). Social clusters showed a mixture of ranging patterns (Fig. 2), with some clusters showing 
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overlapping areas of usage and others using discrete areas in the Coffin Bay embayment. As anticipated, social 
clusters that were closer in the social network also showed similar areas of spatial use within the bay.

We found a positive correlation between female reproductive condition and affiliation indices (r = 0.08; 
p < 0.05), and higher values of affiliation among females in similar reproductive state (Fig. 3; same reproduc-
tive state median GAIs = 0.76; different reproductive state median GAIs = −0.91; p < 0.001). Pairs of females 
in similar reproductive condition associated more often than those in different states; thus, females with calves 
associated more often with other females with calves, and females without calves associated more often with other 
females without calves.

Predictor variable Partial correlation
MRQAP 
(p-value)

Home range overlap 0.43 <0.01

Gregariousness 0.16 <0.01

Sightings per dyad 0.03 0.06

Table 1. Effectiveness of predictor structural variables in explaining association indices between female 
southern Australian bottlenose dolphins (Tursiops cf. australis) in Coffin Bay, South Australia. Partial 
correlation coefficients and results of MRQAP tests were obtained using 10,000 permutations in SOCPROG 2.7 
(Whitehead 2009).

Affiliation 
category

N of 
pairs

N of pairs with 
haplotype data

N of pairs with 
microsatellite data

Mean GAIs 
deviance (SD)

pairs sharing 
haplotype (%)

Mean genetic 
relatedness

Preferred 117 79 99 3.5 (0.79) 44 (55.7) 0.14*

Casual 1331 845 1054 −0.68 (0.99) 405 (48) 0.11

Avoided 37 22 23 −2.94 (0.45) 14 (63.7) 0.11

Table 2. Mean GAIs and genetic relatedness, and number of pairs sharing haplotypes for each affiliation 
category of female southern Australian bottlenose dolphins (Tursiops cf. australis) identified in Coffin Bay, 
South Australia. Asterisks denotes mean genetic relatedness values that differed from random expectations.

Figure 1. Social network of female southern Australian bottlenose dolphins (Tursiops cf. australis) in Coffin 
Bay, South Australia. The colour of the nodes represents the clusters identified using Newman’s modularity 
algorithm (denoted by a capital letter). Node sizes represent the gregariousness of the individuals while shape 
the communities identified at the population level: square and circles, Mt. Dutton-Kellidie Bay and Pt. Douglas 
communities, respectively49. Edge width is proportional to the affiliation index and only displayed for affiliation 
indices greater than 0.82 (twice the mean affiliation index over all female individuals).
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Affiliation patterns and kinship. MtDNA control region haplotype and microsatellite data were gathered 
for 44 and 49 female dolphins considered in the social analysis, respectively. We only found two haplotypes, both 
with similar frequencies (A = 23; B = 21) in the female population. There was a significant correlation between 
the affiliation indices and both pairwise mtDNA haplotype sharing (r = 0.1; p < 0.05) and genetic relatedness 
based on microsatellites (r = 0.1; p < 0.05; Fig. 4).

Comparing different affiliation classes (preferred, casual and avoided), we found that preferred female affil-
iates had higher mean pairwise genetic relatedness than casual and avoided pairs (p < 0.05; Table 2). However, 
we did not detect a significant difference in the frequency of shared haplotypes for the different affiliation classes 
(p = 0.16; Table 2).

At social cluster level, we found a higher frequency of mtDNA sharing (Fig. 5; Table 3; p < 0.05) and higher 
mean genetic relatedness (Table 3; p < 0.05) within than between social clusters. We did not find a significant 
correlation between genetic relatedness (r = 0.02; p = 0.8) or mtDNA haplotype sharing (r = 0.02; p = 0.3) and 
the home range overlap of the individuals.

Discussion
We showed that female southern Australian bottlenose dolphins in Coffin Bay form moderate to strong affilia-
tions and social clusters in which kinship generally correlated positively with their associations. Furthermore, we 
found that the reproductive condition of females correlated with the strength of affiliations. The patterns observed 
conforms to theoretical expectations for the formation of social bonds in female dolphins inhabiting inshore 
environments45, suggesting that similar evolutionary forces may be shaping the social behaviour of dolphin pop-
ulations from disparate geographic areas and different species.

The formation of non-random associations in female mammals is known for several species, such as Asian 
elephants (Elephas maximus), giraffes21, spotted hyenas53, grey kangaroos, (Macropus giganteus54), zebras (Equus 
grevyi) and onagers (Equus hemionus55). In Coffin Bay, female dolphins form preferred associations and social 
clusters that are similar to those described in some other coastal populations of bottlenose dolphins (e.g.36,37,39). 
For example, in the Port Stephens’ dolphin population in eastern Australia, females generally associated at low to 
moderate levels with each other, but more closely with certain females forming social clusters39. Moreover, these 
social clusters used different spatial areas within the embayment, which were characterised by different habi-
tats39,56. Female dolphins in our study area showed a similar pattern, establishing non-random associations with 
certain individuals and forming social clusters that showed spatial preferences for particular sub-embayments 
of Coffin Bay. The social and spatial divisions observed corresponded well with those reported at the population 
level in Coffin Bay, however, in clusters C and G some females were assigned as belonging to different com-
munities49. This could be potentially explained by these two clusters inhabiting the home range area of overlap 
between the two communities detected at population level, probably acting as connectors between the commu-
nities (e.g.57). The formation of social clusters among females also support the idea of a hierarchically organized 
dolphin society in Coffin Bay49, similar to the one reported in Port Stephens56.

The formation of social groups in female bottlenose dolphins has been attributed to benefits leading to 
increased infant survival, defence against predators and male coercion, and lifetime fitness11,13,36,39,43. In Coffin 
Bay, although apparently low (Diaz-Aguirre, pers. obs.), the risk of predation could be influencing female behav-
iour (e.g.58). Great white sharks (Carcharodon carcharias) are relatively common in South Australian waters, and 
have been observed within our study area, with at least one dolphin observed with severe shark injuries likely 
inflicted by this species (Diaz-Aguirre, pers. obs.). In addition, male dolphins in Coffin Bay form small groups, 
likely alliances, which could function to increase their access to females50. Thus females may also benefit by form-
ing social groups to defend against sequestering or coercion attempts by males (e.g.13).

In societies with fission-fusion dynamics, such as those of bottlenose dolphins (e.g.36), females associations 
may vary according to their developmental stage and reproductive condition, which in turn is affected by ecolog-
ical and social pressures (e.g.59,60). In our study area, we observed that females in similar reproductive condition 
associated more often than those in different states. GAIs were higher between individuals in similar reproductive 

Cluster ID
N of individuals 
(pairs)

Mean GAIs 
deviance (SD)

N pairs with 
haplotype data

N pairs with 
microsatellite data

Pairs sharing 
haplotype (%)

Mean genetic 
relatedness

A 4 (6) 3.68 (0.83) 3 3 1 (33.3) 0.02

B 9 (36) 2.18 (0.96) 10 10 9 (90) 0.23

C 8 (28) 2.58 (1.69) 28 28 13 (46) 0.09

D 12 (66) 2.6 (1.23) 55 66 25 (45.5) 0.14

E 9 (36) 2.8 (1.25) 15 36 10 (66.7) 0.13

F 11 (55) 1.92 (1.4) 36 45 27 (75) 0.14

G 2 (1) 1.55 1 1 0 (0) 0.13

Within clusters 2.5 (0.69) 148 189 85 (57.4) 0.14*

Between clusters −0.8 (0.25) 798 987 369 (46.2) 0.11

All females −0.41 (0.17) 946 1176 454 (48) 0.11

Table 3. Mean GAIs and genetic relatedness, and number of pairs sharing haplotypes for each of the seven 
female social clusters of southern Australian bottlenose dolphins (Tursiops cf. australis) identified in Coffin Bay, 
South Australia. Social cluster IDs are represented as in Fig. 1. Asterisks denotes mean genetic relatedness that 
differed from random expectations (p < 0.05).
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condition, and we also found a weak but significant correlation between the reproductive state and the strength 
of the affiliations. Our results are similar to those reported by Möller and Harcourt43, where association indices 
are higher among females in similar reproductive state. However, dissimilar methodologies for estimating asso-
ciations between the studies prevent direct comparisons. Both studies, however, did not have the age class of the 
calves, so it is possible that females with calves prefer to associate with others with calves in similar developmental 
stage. It has been suggested that female bottlenose dolphins in similar reproductive condition may benefit by 
associating with each other because of similar energetic and protection requirements37,43. In Coffin Bay, females 
with calves may have different food requirements (e.g.61), and be under higher pressure of predation by sharks and 

Figure 2. Map of Coffin Bay, South Australia, showing kernel density estimates (KDE) for each of the seven 
female social clusters of southern Australian bottlenose dolphins (Tursiops cf. australis). The red shades 
represent core areas (50% KDE) and blue shades are the representative ranges (95% KDE). Dots represent 
distinct groups of animals with colours and capital letters following those in the social network (Fig. 1). Maps 
were arranged according to the similarity in geographic distribution of each social group. For a more detailed 
analysis of female ranging patterns in this population see Passadore et al.48.
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injuries inflicted by coercing males (e.g.62,63), thus favouring associations among individuals in similar reproduc-
tive condition. We suggest that reproductive condition is a an important determinant of associations in our study 
area, however others factors such as philopatry, calf and/or mother age, social familiarity, maternal experience 
and kinship might also play a role in female sociality43.

The effect of philopatry, as home range overlap, was controlled during GAIs estimation. Despite the lack 
of age information for the females under study, our protocol for identifying individuals in the field, where all 
females included in the analysis were categorized as adults based on size, let us assume that most of the indi-
viduals were adults or about to reach sexual maturity. Thus, the potential for immature and adult animals asso-
ciating together and confounding our results are unlikely. Due to the long-term nature of bottlenose dolphin 
associations36, it is possible that previously close associations may not dissipate completely if two females display 

Figure 3. Box plot showing the strength of affiliations (GAIs values) with respect to the reproductive condition 
of female southern Australian bottlenose dolphins (Tursiops cf. australis) in Coffin Bay, South Australia. The 
middle line shows the median value, the rectangle indicates the first to the third quartiles, and the whiskers 
above and below the box, the minimum and maximum values, respectively. Circles above or below the whiskers 
represent outlier points.

Figure 4. Relationship between affiliation indices and the triadic likelihood estimator (TrioML) of genetic 
relatedness in pairs of female southern Australian bottlenose dolphins (Tursiops cf. australis) inhabiting Coffin 
Bay, South Australia.

Figure 5. Proportion of mtDNA sharing among female southern Australian bottlenose dolphins (Tursiops cf. 
australis) within and between social clusters identified in Coffin Bay, South Australia.
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different reproductive conditions43. Thus, some females close associates may include individuals with whom they 
previously shared similar reproductive states in the past43. Similarly, it has been shown that experienced mothers 
associate more often with females with calves when compared with primiparous mothers, which tend to associate 
with nulliparous females, males or females without calves43,64. Long-term photo-identification data of this popu-
lation and comparisons of survival rates among female offspring inhabiting different areas of Coffin Bay, as well as 
observations of female-male interactions, could provide important information to further test hypotheses about 
the role of reproductive state on female group associations.

The importance of kinship in the establishment and maintenance of social relationships has been documented 
in a wide variety of mammals (e.g. lions, Panthera leo65, elephants19, hyenas22). Moreover, the establishment of 
social bonds among philopatric female kin has been suggested as one of the initial steps in the evolution of mam-
mal sociality66. Similarly, a recent modelling study has suggested that simple specialization for resources among 
competing groups might promote the formation of stable social groups in which kin structure may develop via 
fitness benefits or philopatry35. In this study, we have demonstrated that association patterns in female south-
ern Australian bottlenose dolphins are correlated positively with both matrilineal and bi-parental relatedness. 
In addition, we found higher levels of relatedness and haplotype sharing within than between female social 
clusters. However, when considering different affiliation classes, we only found support for higher bi-parental 
relatedness among preferred female pairs, not haplotype sharing. This last result may be partly affected by the 
low-explanatory power of the maternally inherited marker as only two haplotypes where found in the popu-
lation. Moreover, the lack of correlation between home range overlap and genetic relatedness suggests that the 
associations are likely driven by kinship, and do not represent a by-product of the correlation between these 
two variables. This also suggests that some females could be dispersing from their natal areas into adjacent bays, 
which differs from the general pattern observed in inshore bottlenose dolphins, where females usually remain 
philopatric (i.e.36,44,45,67). Under this scenario, kin clusters of preferred associates may relocate to different areas or 
embayment within Coffin Bay in response to social or ecological pressures, providing an explanation for the lack 
of correlation between home range overlap and genetic relatedness.

We propose that kinship, likely driven by fitness benefits, plays an important role in the formation of social 
preferences among female dolphins in Coffin Bay. A positive correlation between association patterns and kinship 
has been previously reported in cetaceans (e.g. sperm whales20) and in other bottlenose dolphins populations 
inhabiting inshore environments (e.g.39,40). In a review of delphinid socio-genetic structure, Möller45 proposed 
that long-term social bonds in female dolphins occurred mainly among kin, while moderate social bonds may 
emerge between related and non-related individuals. Thus, the associations among non-related individuals 
observed in our study may reflect short-term preferences on a larger temporal scale given the long-lived nature 
of these animals. This could be attributed to ecological factors, such as fluctuations in prey resources, which may 
promote the emigration of individuals into other non-related social groups when competition is high within their 
core social clusters. Long-term data on the association patterns of these dolphins may provide important informa-
tion to better understand the interactions between kinship, philopatry and association patterns.

Our results corroborate predictions from previous studies that in inshore habitats where resources are rela-
tively predictable44, female dolphins may benefit by forming social bonds with kin and other females in similar 
reproductive condition, while maintaining moderate and loose social bonds with some same sex individuals41,43,45. 
The inner area of Coffin Bay is a complex inshore environment, where females exhibit a high degree of site fidelity, 
and range over relatively small areas, likely due to predictable food resources within the small sub-embayments48. 
Our results also provide insights into the mechanism promoting the formation of male associations based on 
kinship relationships in Coffin Bay50. Considering that the population is relatively large47 and organised into two 
social communities49, and that females prefer to associate with kin and with others in similar reproductive condi-
tion, young male calves may encounter opportunities to associate and develop social bonds with other males that 
are genetically related. As males grow older these associations may become stronger and form the basis for the 
formation of social preferences observed in the adult male population50.

In summary, our findings demonstrate that kinship and reproductive condition are important factors influ-
encing association patterns of female southern Australian bottlenose dolphins in Coffin Bay, South Australia. 
Long-term behavioural observations for estimating calving success and how this relates with female age, maternal 
experience, social network metrics, kinship relationships and areas of usage would provide important informa-
tion into the functional mechanisms promoting long-lasting female associations and the formation of social 
clusters. Our results add to the growing knowledge which demonstrates the interplay among social, genetic, 
endogenous and ecological factors shaping dolphins and other complex mammalian societies.

Methods
Ethics statement/approval. This study was carried out under Flinders University Animal Welfare 
Committee approval number E310 and under permits to undertake scientific research: E26171-1, E26171-2, 
E26171-3 and MR00056-1 from the Department of Environment, Water and Natural Resources (DEWNR), South 
Australia, and under S115 ministerial exemptions (MEs: 9902601, 9902660, 9902714 and 9902779) from Primary 
Industries Resources South Australia (PIRSA)49. Researchers in the field attempted to minimize disturbance to 
dolphin groups by following the Australian guidelines for whale and dolphin watching68. Briefly, dolphins were 
approached using a constant speed and following a parallel movement to their direction of travel. For obtaining 
biopsy samples from animals, we used two methods that produce minimum short- and long-term impacts on 
dolphins following the guidelines reported in69 and70. In addition, biopsy samples were only obtained from adult 
animals.
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Study area and data collection. Periodic boat surveys were conducted in Coffin Bay’s inner area (123 
Km2), South Australia, between March 2013 and October 2015 (Fig. 2). The study area is characterised as a shal-
low reverse estuary (depths ranging from 1 to 12 meters) and is composed of three different bays that differ in 
depth and habitat types. Mt. Dutton and Kellidie Bay are mainly dominated by shallow seagrass habitats, whereas 
Pt. Douglas is deeper and contains a diverse array of habitats, including tidal sandflats, temperate reefs, sea-
grass meadows and deeper waters with sandy bottoms71,72. Boat surveys were conducted in calm sea conditions 
(Beaufort < 3) and were designed to cover all different habitat types and seasons within the study area47. More 
information on survey design and transects followed during the study are reported in47.

Dolphin groups sighted were approached to record their location, composition and size, and to obtain pho-
tographs of their dorsal fins using DSLR cameras equipped with 100–300 mm and 100–400 mm zoom lenses. 
Individual dolphins were characterized using natural marks on their dorsal fins73 and the best images of each 
individual in a group were classified in Discovery v1.274. A detailed description of the protocols used for classi-
fying photographs can be found in47. We classified individuals >1.5 m in length as non-calves and those ≤1.5 m 
and closely accompanied by a non-calf individual as calves50. In addition, we collected biopsy samples from 
photo-identified non-calf individuals using the biopsy pole system for bow-riding dolphins69, or the PAXARMS 
remote biopsy system for dolphins70. Samples were stored in a 20% DMSO salt saturated solution and frozen at 
−20 °C following recommendations75.

Genetic analyses. DNA extraction was performed using proteinase K digestion followed by a salting-out 
protocol50,76. Extracted DNA was amplified at 11 microsatellite loci following the conditions reported in77. 
Samples were genotyped on an Applied Biosystems 3130 DNA Analyser and allele size fragments were scored 
using GENEMAPPER v4.1 (Applied Biosystems). The software MICROCHECKER78 was used to test for the 
potential presence of null alleles and allelic dropout. GENEPOP v4.279 was used to assess Hardy-Weinberg equi-
librium (HWE) and linkage disequilibrium using 1,000 iterations. There is no evidence of genetic subdivision 
within the inner area of Coffin Bay for the southern Australian bottlenose dolphin population50,77.

We amplified a region of 450 base pairs (bp) of the mitochondrial DNA (mtDNA) control region using prim-
ers Dlp-5 (5′-CCA TCG WGA TGT CTT ATT TAA GRG GAA-3′) and Dlp-1.5 (5′-TCA CCC AAA GCT GRA 
RTT CTA-3′)80, following conditions detailed in81. PCR products were sequenced on an Applied Biosystems 
3130xl genetic analyser. SEQUENCHER v5.2.4 (Gene Codes Corporation, Ann Arbor, MI, USA) was used to 
align the sequences resulting in a high-quality 437 bp fragment. To genetically determine the sex of each biopsied 
dolphin, we amplified a fragment of the ZFX and SRY genes using the protocols described in82.

Defining female associations and estimating generalized affiliation indices. In this study we con-
sidered a group of dolphins as all individuals within a 100 m radius and participating in similar behavioural activ-
ities37,50. For subsequent analyses we only considered those groups in which a minimum of 75% of the individuals 
were photo-identified based on the estimated group size for each sighting50. We only included the first sighting of 
an individual in each survey day, and subsequent sightings of identical groups in the same day were excluded. All 
dolphins identified in the same group were considered associated, and if new individuals joined a group during a 
sighting these were included in the same group50. To reduce the potential for false null associations among indi-
viduals with low number of sightings, we only considered dolphins observed on more than 11 occasions (equals 
to the median number of sightings for the population)50. In addition, we controlled for the cumulative number of 
sightings of each given dolphin pair during the affiliation index estimation (see below)50. In the subsequent anal-
yses, we only included non-calf individuals positively identified as females either through the molecular sexing 
analysis, or by visual observation of a closely associated calf on more than 10 separate days.

We used generalized affiliation indices (GAIs51) to estimate the strength of associations between pairs of 
females. Using this method, we corrected for the correlation between association indices and structural variables 
known to affect social analyses (e.g.51). Using the half-weight index (HWI83), we constructed a matrix of asso-
ciations and tested the above using controlled multiple regression quadratic assignment procedures (MRQAP): 
cumulative number of sightings for each dolphin pair, gregariousness (number of associates of an individual84), 
and home range overlap50. Variables that showed a significant correlation with the HWI were retained and used 
for GAIs estimation. The controlled generalized affiliation indices were used for subsequent social analyses. We 
did not include reproductive condition or genetic relatedness as structural variables within the GAIs because we 
were interested in evaluating the influence of these variables on the strength of the affiliations (as suggested by 
Whitehead51).

We used the package AdehabitatHR85 in R v3.2.386 to estimate individual dolphins 95% utilization distribu-
tions. We used the href function to estimate the smoothing parameter (h) and subsequently visually explored 
individual ranges to determine the value that best adjusted to the data set. A value of h = 550 was chosen as this 
provided the best representation for the data50. Home range overlap between dolphin pairs was subsequently 
estimated using the kernel-based utilization distribution overlap index method87 in AdehabitatHR85. SOCPROG 
2.788 was used to calculate gregariousness, to carry MRQAP and to estimate GAIs.

Analysis of female affiliation patterns. We used two different approaches for testing preferred and 
avoided companionships among female dolphins in Coffin Bay. First we used the permutation method imple-
mented by Bejder et al.89 and modified by Whitehead88, using daily sampling periods to avoid demographic 
effects90. For this procedure we randomly permuted the affiliation matrices until P values stabilized using the 
standard deviations of the affiliation indices as test statistic50. In addition, we converted GAIs raw residuals into 
deviance residuals for identifying pairs of dolphins that demonstrated preferred, casual or avoided affiliations. 
These was done following recommendations by Whitehead and James51, who considered pairs with values above 
2.5 as preferred, between 2.5 and −2.5 as casual, and below −2.5 as avoided companionships50.
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Furthermore, we tested if females in similar reproductive condition associated more often than those in dif-
ferent states. We constructed a similarity matrix for females according to two categories: (1) observed with a 
dependent calf for >18 months and (2) observed without a calf or observed with a calf for <6 months. The time 
frame selected allowed us to differentiate females that were observed with calves during most of the study period 
from those that did not have calves or had them but for only a short period of time, either because the calf died 
or was weaned soon after the start of the study. Thus, (i) two females in category 1 (or two in category (2) were 
assigned a similarity value of 1; and (ii) two females, one in category 1 and the other in category 2 were assigned a 
similarity value of 0. In category 1 we included 24 females that were observed accompanied by a calf for at least 18 
months. In category 2 we included two females that had calves for 4 and 5 months, and 29 females that were never 
observed with a calf. We tested for a correlation between the similarity matrix and the affiliation indices using a 
Mantel test with 10,000 permutations in SOCPROG 2.788. In addition, we tested for differences in the affiliation 
index values with respect to the females’ reproductive condition (same or different) using a Mann-Whitney test.

To examine potential social divisions among female dolphins in Coffin Bay, we used Newman’s modularity 
matrix clustering technique91–93 implemented in SOCPROG 2.788. This technique attempts to divide the popu-
lation into social modules that have higher affiliation indices between members of the same social group than 
expected by chance using an eigenvector-based method92,93. Values of modularity above 0.3 are considered to 
provide a good description of the data92. Social network diagrams were subsequently constructed using the 
spring-embedded method implemented in NETDRAW v2.1.5.594 to display female social groups and affiliations. 
In addition, to characterize the spatial distribution of the social clusters identified, we allocated the positions of 
the group sightings to the different social modules, and calculated representative (95%) and core (50%) ranges 
using the utilization distribution method implemented in AdehabitatHR85.

Kinship relationships and genetic relatedness. To assess the role that kinship plays on female affilia-
tions, we evaluated the degree of genetic relatedness at three different levels of associations. First, we tested for 
a correlation between bi-parentally and maternally inherited DNA markers and the strength of the affiliations 
(GAIs). We constructed a matrix of pairwise haplotype sharing for the mtDNA dataset and a matrix of pairwise 
genetic relatedness for the microsatellite dataset. Individuals with identical or different haplotypes were assigned 
a value of 1 or 0, respectively. Pairwise microsatellite genetic relatedness was estimated using the triadic likelihood 
estimator (TrioML95) in COANCESTRY v 1.0.1.596. To evaluate the correlation between the strength of affiliations 
(GAIs) and both matrices, we used Mantel tests (with 10,000 permutations) in SOCPROG 2.750,88.

Second, we compared the frequencies of shared haplotypes among preferred, casual and avoided affiliates 
using a randomization chi-square test with 10,000 Monte Carlo permutations. In addition, mean pairwise genetic 
relatedness was compared to random expectations among preferred, casual and avoided affiliates using 10,000 
permutations in PERM97.

Third, we investigated whether females identified in the same social cluster had higher mean pairwise relat-
edness or higher frequencies of shared haplotypes than those of different clusters. We compared mean pairwise 
genetic relatedness and frequencies of haplotype sharing within and between social clusters using 10,000 permu-
tations in COANCESTRY v1.0.1.596, and a randomization chi-square test with 10,000 permutations, respectively.

Finally, to discard the possible association between genetic relatedness and philopatry, which could confound 
our kinship analysis, we tested for a correlation between the individuals’ home range overlap and their genetic 
relatedness (maternal and bi-parental separately) using Mantel tests with 10,000 permutations in SOCPROG 
2.788.

Data availability
Data made available to all interested researchers upon reasonable request to Fernando Diaz-Aguirre 
(fernandobiologist@gmail.com).
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