
OR I G I N A L A R T I C L E

On the roles of landscape heterogeneity and environmental
variation in determining population genomic structure in a
dendritic system

Chris J. Brauer1 | Peter J. Unmack2 | Steve Smith1,3 | Louis Bernatchez4 |

Luciano B. Beheregaray1

1Molecular Ecology Laboratory, College of

Science and Engineering, Flinders

University, Adelaide, South Australia,

Australia

2Institute for Applied Ecology, University of

Canberra, Canberra, Australian Capital

Territory, Australia

3Department of Integrative Biology and

Evolution, University of Veterinary

Medicine, Vienna, Austria

4Institut de Biologie Intégrative et des

Systèmes, Université Laval Québec,

Québec, Quebec, Canada

Correspondence

Luciano B. Beheregaray, Molecular Ecology

Laboratory, College of Science and

Engineering, Flinders University, Adelaide,

SA 5042, Australia.

Email: luciano.beheregaray@flinders.edu.au

Funding information

Australian Research Council, Grant/Award

Number: FT130101068

Abstract

Dispersal and natural selection are key evolutionary processes shaping the distribu-

tion of phenotypic and genetic diversity. For species inhabiting complex spatial envi-

ronments however, it is unclear how the balance between gene flow and selection

may be influenced by landscape heterogeneity and environmental variation. Here,

we evaluated the effects of dendritic landscape structure and the selective forces of

hydroclimatic variation on population genomic parameters for the Murray River rain-

bowfish, Melanotaenia fluviatilis across the Murray–Darling Basin, Australia. We

genotyped 249 rainbowfish at 17,503 high‐quality SNP loci and integrated these

with models of network connectivity and high‐resolution environmental data within

a riverscape genomics framework. We tested competing models of gene flow before

using multivariate genotype–environment association (GEA) analysis to test for sig-

nals of adaptive divergence associated with hydroclimatic variation. Patterns of neu-

tral genetic variation were consistent with expectations based on the stream

hierarchy model and M. fluviatilis’ moderate dispersal ability. Models incorporating

dendritic network structure suggested that landscape heterogeneity is a more

important factor determining connectivity and gene flow than waterway distance.

Extending these results, we also introduce a novel approach to controlling for the

unique effects of dendritic network structure in GEA analyses of populations of

aquatic species. We identified 146 candidate loci potentially underlying a polygenic

adaptive response to seasonal fluctuations in stream flow and variation in the rela-

tive timing of temperature and precipitation extremes. Our findings underscore an

emerging predominant role for seasonal variation in hydroclimatic conditions driving

local adaptation and are relevant for informing proactive conservation management.
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1 | INTRODUCTION

Gene flow and selection are key evolutionary processes regulating

the potential for adaptive divergence among populations

(Lenormand, 2002). The balance between gene flow and selection is

affected by a range of factors including life history, population size,

landscape heterogeneity and environmental variation. Growing evi-

dence suggests that most adaptive genomic responses to
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environmental variation are polygenic in nature (Bernatchez, 2016;

Pritchard & Di Rienzo, 2010). For species inhabiting complex spatial

environments, landscape structure is also expected to greatly

impact patterns of demographic connectivity and genetic diversity

(Davis, Epps, Flitcroft, & Banks, 2017; Thomaz, Christie, & Knowles,

2016). Following the emergence of the field of landscape genetics

(Manel, Schwartz, Luikart, & Taberlet, 2003), significant research

effort has been focused on understanding how environmental

heterogeneity affects patterns of gene flow and spatial population

structure (Manel & Holderegger, 2013). More recently, landscape

genomics approaches have also provided information concerning

the environmental determinants of adaptive population divergence.

Many analytical challenges remain however, particularly when

attempting to detect a signal of adaptive divergence against the

backdrop of complex spatial environments such as dendritic river

networks (Fourcade, Chaput‐Bardy, Secondi, Fleurant, & Lemaire,

2013). Accordingly, landscape genomics studies should ideally

include analyses that both maximize the likelihood of detecting a

polygenic signal of adaptation and also provide the means to

understand, and control for, spatial patterns of connectivity and

population structure.

Recent simulations that compared genotype–environment associ-

ation (GEA) approaches commonly used to identify multilocus adap-

tation (Forester, Lasky, Wagner, & Urban, 2018) suggested that

multivariate constrained ordination methods, such as redundancy

analysis (RDA), may offer the best balance between low false posi-

tive and high true positive rates. These methods are relatively robust

across a range of demographic scenarios and can account for spatial

genetic structure without assuming specific population models that

are almost certainly violated in complex spatial environments. Fores-

ter et al. (2018) found that controlling for spatial structure in their

RDA analyses was of little benefit in systems with low population

structure (average global FST = 0.05) and was even detrimental for

some scenarios. Their study did not include simulations with higher

population structure however, and it seems likely that in such cases,

controlling for spatial population structure may be more important,

although perhaps at the cost of reduced power to identify true

positives.

In addition to searching for the genomic signal of local adapta-

tion, landscape genomics can also be used to understand how land-

scape structure contributes to spatial variation in connectivity and

gene flow. This is particularly important in spatially heterogeneous

landscapes where simple models of gene flow such as isolation by

distance (IBD) may be inadequate to explain the observed popula-

tion structure. Dendritic river networks are characterized by com-

plex patterns of habitat heterogeneity, and population structure in

these systems is often not well explained by IBD (Campbell Grant,

Lowe, & Fagan, 2007). In such cases, the stream hierarchy model

(SHM; Meffe & Vrijenhoek, 1988) may provide a more appropriate

hypothesis for making predictions about the spatial distribution of

genetic variation. Under the SHM, we expect to observe hierarchi-

cal genetic population structure that is also consistent with river

network structure. Here, populations restricted to tributaries in

adjacent catchments should exhibit reduced genetic diversity and

increased population divergence relative to larger populations fur-

ther downstream (Meffe & Vrijenhoek, 1988). Predictions based on

the SHM have been tested in a number of empirical studies with

varying levels of support (Brauer, Unmack, Hammer, Adams, &

Beheregaray, 2013; Hopken, Douglas, & Douglas, 2013; Huey,

Baker, & Hughes, 2006; Lean, Hammer, Unmack, Adams, & Behere-

garay, 2016; Tonkin et al., 2017). However, few studies have anal-

ysed competing models of connectivity within a riverscape

genomics framework that also assesses environmental heterogene-

ity. In this context, incorporating the SHM into GEA analyses may

improve inferences of local adaptation by better accounting for the

unique spatial structure of river networks than more simple popula-

tion models.

The Murray–Darling Basin (MDB) is an ideal system for testing

the combined effects of dendritic network structure and environ-

mental variation on patterns of biodiversity. One of the largest river

basins in Australia, the MDB, covers about 14% of the continent. It

spans a range of hydroclimatic environments from arid to wet, tem-

perate to subtropical (Figure 1) and is of high ecological value with

many endemic and threatened species (Murray–Darling Basin

Authority 2010). The region is, however, currently undergoing rapid

hydrological changes due to a combination of human development

and altered climate regime (Leblanc, Tweed, Van Dijk, & Timbal,

2012), and a recent assessment of ecosystem health rated the

majority of the MDB as either poor or very poor condition (Davies,

Harris, Hillman, & Walker, 2010). Extensive agricultural and urban

development has resulted in wholesale habitat degradation due to

water abstraction, flow regulation, reduced water quality, introduced

species and the widespread construction of in‐stream barriers (Bal-

combe et al., 2011). As a result of these impacts, the MDB is argu-

ably one of the most severely fragmented and degraded ecosystems

in Australia (Kingsford, 2000), with over half of the basin's native fish

species now considered threatened (Lintermans, 2007). Riverscape

genomic studies of MDB fishes to date have focused on species

with either extremely low (Brauer, Hammer, & Beheregaray, 2016)

or extremely high dispersal abilities (Attard et al., 2018; Harrisson et

al., 2017). These studies were consistent in highlighting the impor-

tance of hydroclimatic variation in shaping patterns of adaptive

divergence among populations. Support for a general effect of land-

scape structure on connectivity is less clear however, likely due to

variations in life history, population size and dispersal capacity. In

this case, examining a relatively abundant generalist species with

intermediate natural dispersal ability may increase the generality of

previous findings.

Rainbowfishes (Melanotaeniidae) are one of the most species‐
rich freshwater fish families in New Guinea and Australia, with most

Australian species occurring in the subtropical or tropical north

(Unmack, Allen, & Johnson, 2013). The focus of this study, the Mur-

ray River rainbowfish, Melanotaenia fluviatilis, occurs further south

than any other rainbowfish and is the only temperate rainbowfish

species. Considered a generalist species, the Murray River rainbow-

fish occupies a range of stream and wetland habitats and possesses
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moderate dispersal capacity (Baumgartner & Harris, 2007; McGuigan,

Zhu, Allen, & Moritz, 2000). While relatively common in the northern

MDB, they are less abundant in the Murray River where their south-

ern range margin is thought to be limited by cooler winter tempera-

tures (Crowley, Ivantsoff, & Allen, 1986). In this study, we applied

genotype‐by‐sequencing (GBS) within a riverscape genomics frame-

work to test two main hypotheses concerning (a) the role of habitat

heterogeneity in determining spatial variation in connectivity and

gene flow and (b) the environmental factors influencing adaptive

divergence among populations. First, using a reduced neutral SNP

data set, we assess patterns of genomewide diversity for M. fluviatilis

in the context of expectations based on the SHM. Using multiple

matrix regression, we test the hypothesis that models of gene flow

that incorporate the natural dendritic hydrological structure will out-

perform those based on geographic distance (i.e., IBD). Second, we

incorporate the SHM into a novel multivariate constrained ordination

GEA approach to test the hypothesis that hydroclimatic variation

contributes to adaptive divergence of M. fluviatilis populations across

the MDB. Our integrated riverscape genomics framework provides

novel insight into how landscape heterogeneity and environmental

variation together modulate key evolutionary processes to shape the

genomic architecture of riverine species.

2 | METHODS

2.1 | Sampling and genomic data collection

Climate, and in particular rainfall across the MDB, is highly tempo-

rally and spatially variable. The northern MDB is characterized by

unpredictable summer rainfall, while winter rainfall dominates in the

south. Average annual rainfall across the basin is generally low, but

ranges in extremes from >1,500 mm in the southeast highlands to

<200 mm in the west (Chiew et al., 2008). A total of 249 M. fluvi-

atilis samples were collected from 14 locations between 2009 and

2012. These were selected to capture maximum hydroclimatic varia-

tion across the MDB, along with potential spatial population struc-

ture within, and between the two major catchments of the Murray

and Darling Rivers (Figure 1; Table 1). Fish were ethically euthanized

using clove oil, snap frozen in liquid nitrogen and stored at −70°C in

the Australian Biological Tissues Collection at the South Australian

Museum, Adelaide.

DNA extractions were performed following a modified salting‐
out protocol (Sunnucks & Hales, 1996). DNA integrity and purity

were assessed using gel electrophoresis and a NanoDrop 1000 spec-

trophotometer (Thermo Scientific), respectively. Sequencing libraries

F IGURE 1 Location of the Murray–Darling Basin (MDB; shaded area) in Australia and sampling locations for Melanotaenia fluviatilis in the
MDB. Inset maps depict each of the first two axes of principal component analyses conducted on hydroclimatic variables related to
temperature (a and b), precipitation (c and d) and flow (e and f) across the study area
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were prepared based on a double‐digest GBS approach (Poland,

Brown, Sorrells, & Jannink, 2012) using the restriction enzymes PstI

and MseI. Using custom individual barcodes to multiplex 48 samples

per lane, libraries were randomly assigned to each of six Illumina

HiSeq2000 lanes and sequenced as single‐end, 100‐bp reads. Raw

sequencing data were demultiplexed using the process_radtags mod-

ule from STACKS 1.35. dDOCENT 2.18 (Puritz, Hollenbeck, & Gold,

2014) was used for de novo assembly of a reference catalogue and

genotyping. The resulting multisample variant call file was filtered

using VCFTOOLS (Danecek et al., 2011) to retain only bi‐allelic SNP loci

present in at least 90% of individuals in all populations with a mini-

mum minor allele frequency of 0.05, before the following series of

filtering steps were then applied in order to remove SNPs likely to

be the result of sequencing errors, paralogs, multicopy loci and arte-

facts of library preparation. These steps are based on scripts avail-

able on the dDocent GitHub page (https://github.com/jpuritz/dDoce

nt/). (a) Allele balance: for each locus, it should be expected that an

approximately equal number of reads for the reference and alternate

alleles for individuals are called as heterozygotes. Loci were there-

fore removed if the proportion of alternate to reference allele was

<0.25 or >0.75 across all heterozygote individuals. (b) Mapping qual-

ity: as both alleles of a bi‐allelic locus should start from the same

restriction enzyme cut site, mapping quality scores for the two alle-

les should be similar. Loci with a mapping quality score ratio

(alternate allele mapping score/reference allele mapping score) <90%

or >110% were therefore discarded. (c) Read quality: loci with over-

all low read quality scores (<25% of read depth) were discarded.

Additionally, Li (2014) found a predictable relationship between Illu-

mina read quality scores and read depth, such that where loci are

covered by a high number of reads, quality scores are likely to be

inflated. In this case, a higher quality score threshold is required to

distinguish true variants from errors. Consequently, for loci with

unusually high read depths (greater than the mean depth plus three

times the square root of the mean), those with quality scores less

than two times their read depth were also removed. (d) Read depth:

the read depth of each locus was calculated and the frequency dis-

tribution of mean depth per locus, averaged over all individuals was

used as a guide to remove loci with abnormally high coverage. Indi-

vidual samples were allowed a maximum of 20% missing data.

2.2 | Genetic diversity and neutral population
structure

Population structure and demographic parameters should normally

be assessed using loci conforming to neutral expectations (Allendorf,

Hohenlohe, & Luikart, 2010; Luikart, England, Tallmon, Jordan, &

Taberlet, 2003). To define a putatively neutral data set, we used

BAYESCAN 2.1 (Foll & Gaggiotti 2008) to detect outlier loci, as it per-

forms well where complex demographic scenarios may deviate from

the underlying model (Foll & Gaggiotti 2006, 2008). The software

was run for 100,000 iterations with prior odds of 10,000. Loci with

a q‐value <0.1 (false discovery rate [FDR] 10%) were considered

outliers, and the remaining SNPs were examined for departure from

expectations of Hardy–Weinberg equilibrium (HWE) using GENODIVE

2.0b27 (Meirmans & Van Tienderen, 2004). Loci out of HWE at a

FDR of 10% in more than 50% of populations were subsequently

removed (along with candidate adaptive loci identified in the GEA

analysis; see below) and the remaining, putatively neutral SNPs were

used for estimating genetic diversity, demographic parameters and

population structure.

Expected heterozygosity (HE), observed heterozygosity (HO), per-

centage of polymorphic loci and inbreeding coefficient (FIS) were cal-

culated for each sampling site based on the neutral SNPs using

GENODIVE. Population differentiation was assessed by estimating pair-

wise FST (Weir & Cockerham, 1984) among sampling sites using GEN-

ODIVE, with significance assessed using 10,000 permutations. GENODIVE

was also used to perform a hierarchical AMOVA based on FST

among major river catchments, among sites within catchments and

among individuals within sites using 10,000 permutations. Missing

data were replaced with alleles drawn randomly from the overall

allele frequency distribution.

Population structure was examined using the spatially explicit

ancestry estimation method of TESS3 (Caye, Deist, Martins, Michel, &

François, 2016). This method does not make assumptions concerning

HWE or linkage disequilibrium suggesting it should perform well

where landscape heterogeneity may result in complex spatial pat-

terns of dispersal and population structure. The number of ancestral

TABLE 1 Sample size (N), expected heterozygosity (HE), observed
heterozygosity (HO), percentage of polymorphic loci (%) and
inbreeding coefficient (FIS)

Site Location N HE HO % FIS

MBR (M) Murray R., Murray

Bridge

20 0.192 0.188 84.1 0.018

MDC (M) Murray–Darling

confluence

22 0.238 0.238 92.1 −0.003

GGL (M) Murray R., Gol Gol 30 0.232 0.229 93.3 0.011

WAK (T) Wakiti Ck., Kotupna 16 0.116 0.113 36.7 0.018

BEN (T) Broken R., Benalla 14 0.117 0.111 37.1 0.032

BOG (M) Bogan R., Bourke 16 0.245 0.221 84.2 0.069

PEL (T) Peel R., Caroll 9 0.166 0.164 53.7 0.001

GWY (T) Gwydir R., Bingara 12 0.169 0.157 58.9 0.048

DUM (T) Dumaresq R., Texas 14 0.157 0.147 54.1 0.037

MIB (T) McIntyre Brook,

Inglewood

20 0.163 0.164 57.2 −0.010

STG (T) Canning Ck.,

Stonehenge

20 0.149 0.152 52.3 −0.025

OAK (T) Oakey Ck.,

Bowenville

18 0.317 0.308 84.5 0.022

WAR (T) Condamine R.,

Warwick

20 0.312 0.299 84.3 0.027

KIL (T) Farm Ck., Killarney 18 0.303 0.275 83.1 0.061

Note. Streams were classified as either main channel (M) or tributaries

(T) according to position in the stream network to aid with interpretation

of results in context with the stream hierarchy model (Meffe & Vrijen-

hoek, 1988). Bonferroni corrected p‐Values for FIS were all >0.05.
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populations (K) was evaluated using 10 independent runs of each K

(K = 1–14) before using a cross‐validation procedure to select the

best value of K according to the asymptote in the plot of cross‐vali-
dation scores (Caye et al., 2016). Admixture coefficients were plot-

ted using DISTRUCT (Rosenberg, 2004).

We used BAYESASS 3.0.4 (Wilson & Rannala, 2003), modified to

allow analysis of large SNP data sets (https://github.com/smussma

nn82/BayesAss3-SNPs) to estimate recent migration among popula-

tions. BAYESASS implements a Bayesian MCMC resampling method to

estimate asymmetrical rates of recent migration, where migration (m)

is the proportion of each population having migrant ancestry. First‐
generation migrants, or the offspring of at least one first‐generation
migrant, are considered as having migrant ancestry. The software

was run for 10 million iterations with a 1 million iteration burn‐in.
Mixing parameters for allele frequencies, inbreeding coefficients and

migration rate were adjusted to achieve optimum acceptance rates

of 20%–40% (Wilson & Rannala, 2003). Convergence was confirmed

by plotting the cumulative log likelihoods of the iterations using the

program TRACER 1.7 (Rambaut, Drummond, Xie, Baele, & Suchard,

2018), and five runs were performed to ensure consistency.

2.3 | Models of population connectivity: spatial vs.
dendritic structure

The physical structure of dendritic river networks is well known to

greatly affect patterns of genetic variation of stream‐dwelling organ-

isms (Fourcade et al., 2013; Hughes, Schmidt, & Finn, 2009; Morris-

sey & de Kerckhove, 2009; Thomaz et al., 2016). These patterns may

be further influenced by the highly variable hydroclimatic conditions

that characterize the MDB leading to decadal cycles of population

isolation punctuated by occasional long‐distance dispersal events

facilitated by infrequent flooding (Attard et al., 2016; Brauer et al.,

2016; Cole et al., 2016; Faulks, Gilligan, & Beheregaray, 2010a). To

determine the contribution of landscape heterogeneity to observed

patterns of population structure, we compared models of gene flow

based on geographic distance (IBD) with models incorporating the

natural dendritic hydrological structure using multiple matrix regres-

sion with randomization (MMRR; Wang, 2013). This method uses

multiple regression to evaluate how genetic distance responds to mul-

tiple independent variables such as geographic or environmental dis-

tance matrices. To assess IBD, pairwise population FST was regressed

against pairwise waterway distances calculated with ARCMAP 10.3. To

assess the influence of dendritic structure, we estimated FST for indi-

vidual stream sections following the StreamTree model of Kalinowski,

Meeuwig, Narum, and Taper (2008). This method models genetic dis-

tances among populations as the sum of all pairwise genetic distances

mapped to each section of the stream network independently of the

length of each section (Kalinowski et al., 2008). In this way, the

effects of distance are separated from the effects of landscape

heterogeneity in identifying reaches of the stream network that con-

tribute most to restricting gene flow (i.e., due to dendritic structure,

in‐stream barriers, tributary–main channel confluences or other

unknown landscape effects). Model fit was assessed by plotting the

StreamTree fitted distance against observed FST and calculating the

regression coefficient of determination (R2). This model was then

compared with the model of IBD, again using MMRR. All distance

matrices were z‐transformed to facilitate direct comparison of partial

regression coefficients (Schielzeth, 2010) and in each case model sig-

nificance was assessed using 10,000 random permutations.

2.4 | Local hydroclimatic conditions and adaptive
population divergence

Hydroclimatic variation across the MDB was summarized by per-

forming principal component analysis (PCA) on 16 environmental

variables already identified as predictors of adaptive genetic variation

for freshwater fishes in this region (Attard et al., 2018; Brauer et al.,

2016). These data are linked to a 9‐s digital elevation model‐derived
stream network (~250 m resolution) and were obtained from the

Australian hydrological geospatial fabric (Geoscience Australia 2011;

Stein, Hutchinson, & Stein, 2014). Separate PCAs were performed

for three groups of variables describing variation in (a) temperature,

(b) precipitation and (c) stream flow, to aid interpretation of the

results. The PCAs were carried out using the FACTOMINER R package

(Lê, Josse, & Husson, 2008) and principal components (PCs) with

eigenvalues greater than one were retained as predictors for the

RDA. The retained environmental PCs were subjected to a forward

selection procedure using the PACKFOR R package (Dray, Legendre, &

Blanchet, 2016) to remove any nonsignificant (p > 0.001) PCs from

the model. Variance inflation factor (VIF) analysis was then used to

exclude highly correlated PCs using a VIF threshold of 10 (Dyer,

Nason, & Garrick, 2010).

Multivariate GEA methods such as RDA are well suited to

detecting small changes in allele frequencies of many covarying loci

spread throughout the genome (Bourret, Dionne, Kent, Lien, & Ber-

natchez, 2013) as expected for a polygenic response to selection

(Forester et al., 2018; Le Corre & Kremer, 2012). As it is thought

most ecologically important traits may evolve via polygenic adapta-

tion (Pritchard & Di Rienzo, 2010), we employed RDA to detect

associations between SNP loci and the environment, as summarized

by the hydroclimatic PCs. As population structure may confound

inferences of selection, we performed two RDAs exploiting compli-

mentary methods to account for different aspects of spatial popula-

tion structure. For the first RDA, we modelled broad landscape‐scale
spatial effects by calculating a set of spatial vectors describing the

distribution of sampling sites across a range of spatial scales. Multidi-

mensional scaling (MDS) was first applied to a matrix of pairwise

waterway distances between sites to provide transformed coordi-

nates that better represent the hydrological distance between sites.

The new coordinates were then expressed as third‐order orthogonal
polynomials to account for nonlinear spatial patterns as expected

under the SHM, following the method of Meirmans (2015). A spatial

filtering procedure modified from Forester et al. (2018) was then

performed to determine which polynomials to include in the model.

The spatial polynomials were then assessed for correlation with the

environmental variables and those with Pearson correlation
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coefficients <0.5 for all environmental PCs were retained as condi-

tioning variables in the partial RDA model.

In performing a second RDA, we explored the possibility of using

the StreamTree model to control for spatial population structure. We

propose that this method offers several advantages in riverine sys-

tems by incorporating the complex patterns of spatial structure

unique to dendritic river networks, as well as restrictions to connec-

tivity due to barriers and other potentially unknown sources of resis-

tance. We again used MDS, this time to transform the pairwise

distances estimated by the StreamTree model into coordinates for

input to the RDA as conditioning variables. The final partial RDA

models assessed variation in individual SNP genotypes constrained

by the retained environmental PCs after controlling for the effects

of spatial structure. In both cases, significance of the full model, each

axis and marginal significance of each environmental PC, was

assessed using 1,000 permutations. The mean locus score across all

loci was calculated for each significant (p < 0.05) RDA axis, and indi-

vidual loci with a score greater than three standard deviations from

the mean were considered candidates for selection (Forester, Jones,

Joost, Landguth, & Lasky, 2015). Custom R scripts used for the envi-

ronmental and spatial filtering, and the RDAs are available on Dryad:

https://doi.org/10.5061/dryad.t2v8825.

2.5 | Functional annotation of candidate loci

Annotation information and gene ontology (GO) terms associated

with the SNP loci were examined using BLAST2GO (Conesa et al.

2005). A BLAST search and annotation of the flanking sequences for

all 17,503 SNPs was performed against the NCBI nonredundant

nucleotide database with the BLAST e‐value threshold set to 1 × 10−3

and an annotation threshold e‐value threshold of 1 × 10−6. Enrich-

ment of GO terms in the strong candidate data set was assessed rel-

ative to all annotated SNPs using Fisher's exact test with a FDR of

0.05, and CATEGORIZER (Hu, Bao, & Reecy, 2008) was used to summa-

rize GO terms assigned to the candidate loci according to the GO‐
Slim classification method.

3 | RESULTS

3.1 | Sequencing quality and genetic diversity

After demultiplexing, a total of 645,811,728 raw sequencing reads

were recovered and following quality trimming 645,506,093 reads

(mean per sample = 2,592,394, min = 726,784, max = 5,927,097)

were retained (Supporting Information Table S1). After filtering,

17,503 SNP loci were retained from the 537,180 variant sites pre-

sent in the whole dDOCENT catalogue (Table 2). BAYESCAN identified

706 FST outlier loci (239 and 467 putatively under divergent and bal-

ancing selection, respectively) and after excluding these and the GEA

candidate loci (see below), and filtering for HWE, 16,165 putatively

neutral SNP loci remained (Table 2). These data were used for all

downstream analyses excluding the GEA test which was performed

using all 17,503 SNPs.

Estimates of genetic diversity varied across sites, with an average

expected heterozygosity (HE) of 0.205 (0.116–0.317), average

observed heterozygosity of 0.198 (0.111–0.317) and an average of

68.3% (36.7%–93.3%) polymorphic loci. None of the Bonferroni cor-

rected FIS estimates were significantly different from zero (Table 1).

In general, genetic variation was highest for sites from the Con-

damine River (OAK, WAR and KIL) and main channel sites along the

Darling and Murray Rivers (BOG, MBR, MDC and GGL). On the

other hand, headwater tributary sites showed the lowest diversity,

particularly in the Murray River (WAK and BEN).

3.2 | Population structure within and among river
catchments

There was substantial population structure across the basin. Pairwise

FST estimates among sampling locations were all significant

(p < 0.006) and ranged from 0.003 between adjacent sites MDC and

GGL to 0.489 between upper Murray River site WAK and upper

Darling River site OAK (Supporting Information Table S2). Results

from AMOVA fit the predictions from the SHM, with most of the

total variation partitioned between the two major sub‐basins (i.e.,

26.3% between the Murray and Darling Rivers, p < 0.001), and with

less but also significant variation partitioned between sites within

the two major rivers (4.9%, p < 0.001) and among individuals within

sites (68.9%, p < 0.001) (Table 3).

Based on cross‐validation scores, the clustering analysis per-

formed with TESS3 identified K = 6 as the most likely number of

ancestral populations (Figure 2c; Supporting Information Figure S1);

however, assessment of a range of K values revealed several levels

of hierarchical structure consistent with the SHM (Figure 2; Support-

ing Information Figure S2). Figure 2a (K = 2) separates the three iso-

lated Condamine River sites in the upper reaches of the Darling

River from the rest of the MDB, while K = 3 separates the Murray

and Darling rivers and indicates that sites downstream of the

TABLE 2 Number of variant sites retained after each filtering
step for Melanotaenia fluviatilis from the Murray–Darling Basin

Step SNP count

Raw SNP catalogue 537,180

Genotyped in

≥90% of individuals, base quality ≥30, minor allele

count of 3

137,714

Bi‐allelic only 113,250

Single SNP per locus 33,787

Sequencing errors, paralogs, multicopy loci and artefacts of library

preparation

1) Allele balance 29,711

2) Mapping quality 27,556

3) Read quality 26,845

4) Read depth, MAF > 0.05 17,503

Putatively neutral in Hardy–Weinberg equilibrium 16,165
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Murray–Darling confluence are more influenced by gene flow from

the Murray than the Darling River (Figure 2b).

BAYESASS indicated very low levels of recent migration among

most demes with the 95% confidence intervals for only one pairwise

estimate not including zero (proportion of migrant ancestry at MDC

from GGL, 0.199; Supporting Information Table S3).

3.3 | Models of population connectivity

Results of the MMRR tests indicated that by accounting for land-

scape heterogeneity, the StreamTree model was a far better model

of M. fluviatilis population differentiation than the simple IBD model

(Figure 3; Table 4). The StreamTree model distance was a good pre-

dictor of observed genetic distance (R2 = 0.976, p < 0.0001). In

contrast, the test for IBD showed a lower, but significant relation-

ship between FST and waterway distance between sites

(R2 = 0.337, p < 0.001). Model fit was not improved by including

both StreamTree distance and geographic distance, and only Stream-

Tree distance remained significant in the full model (Table 4). Fig-

ure 4 provides a visual–spatial representation of the stream

sections inferred by the StreamTree model as most restricting dis-

persal, with sections colour‐coded according to modelled distance

(yellow represents a local StreamTree distance of <0.01, orange:

0.01–0.03 and red: >0.03).

3.4 | Genotype–environment association analysis

The 16 hydroclimatic variables considered for the GEA analysis

included five temperature variables (average annual mean tempera-

ture, coldest month minimum temperature, hottest month maximum

temperature, driest quarter mean temperature and wettest quarter

mean temperature), six precipitation variables (average annual mean

rainfall, driest quarter mean rainfall, wettest quarter mean rainfall,

warmest quarter mean rainfall, coldest quarter mean rainfall and

average rainfall erosivity) and five flow‐related variables (annual

mean runoff, annual runoff coefficient of variation, monthly runoff

coefficient of variation, runoff perenniality and runoff skewness)

(Supporting Information Table S4). The first two components of each

of the three environmental PCAs (temperature, precipitation and

flow) explained 85.8%, 98.0% and 88.4% of the total variation,

respectively (Supporting Information Table S5). The major hydrocli-

matic gradients across the MDB (Figure 1a–f) indicate sites in the

lower Murray experience higher temperatures during the dry season

than Darling River sites where maximum temperatures coincide with

wetter periods (Figure 1a,b; Supporting Information Table S5). Pre-

cipitation is generally higher for headwater sites across the whole

MDB, with those in the Murray River receiving most rainfall during

the cooler months (Figure 1c,d; Supporting Information Table S5).

Stream flow is more variable, both within and among years in the

tributaries compared to those further downstream, closer to the

main channel (Figure 1e,f; Supporting Information Table S5). Follow-

ing VIF analysis, temperature PC1 and PC2, precipitation PC2 and

flow PC2 were retained for the RDA models.

The spatial filtering procedure resulted in the retention of three

of the nine spatial polynomials as conditioning variables for the first

RDA (Supporting Information Table S6). The RDA model was globally

significant (p < 0.001) and indicated that seasonal variation in flow,

precipitation during the coldest quarter and temperature during the

wettest quarter explained 5% of the total genetic variation after

accounting for spatial structure, which explained 33% of the total

variation. The first two RDA axes were significant (p < 0.05) and

explained 46.3% and 29.6% of the constrained variation (portion of

total genetic variation explained by the environment), respectively

(Figure 5a). Permutation tests revealed that each explanatory vari-

able was significant in the model (p < 0.001) with flow PC2 (sea-

sonal variation in runoff) accounting for the highest proportion of

constrained variation (35.2%), followed by temperature PC2 (maxi-

mum temperature of hottest month, 24.3%), temperature PC1 (tem-

perature during the wettest quarter, 22.4%) and precipitation PC2

(rainfall during the coldest quarter, 18.1%). Individual locus scores

for 261 SNP loci were more than three standard deviations from the

mean for the RDA1 and RDA2 axes.

The StreamTree RDA was globally significant (p < 0.001), and

environmental variation explained 4% of the total genetic variation

(Figure 5b). Each of the four environmental PCs were significant in

the model (p < 0.001) with flow PC2 (seasonal variation in runoff)

again accounting for the highest proportion of constrained variation

(28.8%), followed by temperature PC1 (temperature during the wet-

test quarter, 21.9%), temperature PC2 (maximum temperature of

hottest month, 19.7%) and precipitation PC2 (rainfall during the

coldest quarter, 12.0%). The StreamTree model accounted for 33% of

the total variation. A total of 710 SNP loci were more than three

standard deviations from the mean locus scores across the first four

RDA axes, which explained 35.4%, 33.3%, 20.2% and 11.2% of the

constrained variation, respectively (p < 0.001). Comparing results for

the two RDAs revealed 146 loci were identified in both tests and

these SNPs were conservatively considered as strong candidate loci

contributing to adaptive divergence of M. fluviatilis across the MDB.

BLAST2GO reported blast hits for 3,057 of the 17,503 loci, of

which 1,188 could be assigned GO terms. The 146 GEA candidate

loci scored blast hits for 28 loci, of which five were assigned GO

terms. Results of the Fisher's exact test indicated no GO terms were

significantly (FDR 0.05) enriched in the candidate data set. The most

common terms, however, included biological processes related to

metabolism (GO:0008152), signal transduction (GO:0007165), cell

communication (GO:0007154) and nucleic acid metabolism

(GO:0006139; GO:0006259), and molecular functions concerning

TABLE 3 Hierarchical analysis of molecular variance (AMOVA)
based on FST for Melanotaenia fluviatilis from the Murray–Darling
Basin

Source of variation % Variance p Value

Between Murray and Darling rivers 26.3 0.001

Among sites within rivers 4.9 0.001

Among individuals within sites 68.9 0.001
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catalytic activity (GO:0003824) and binding (GO:0005488) (Support-

ing Information Appendix S1).

4 | DISCUSSION

We were able to identify key roles for both spatial and environmen-

tal variation in shaping patterns of genetic diversity and adaptive

divergence of populations inhabiting a complex dendritic network.

Spatial patterns of neutral genetic variation and population connec-

tivity were consistent with the SHM with generally low genetic

diversity in headwater populations relative to those further down-

stream. Hierarchical population structure congruent with river net-

work structure was also in line with expectations of the SHM and

with the species moderate dispersal ability. Our hypothesis that

accounting for dendritic hydrological structure in models of gene

flow would improve predictions of population differentiation over

simple IBD was strongly supported, suggesting landscape

F IGURE 2 Admixture plots based on 16,165 neutral SNP loci for Melanotaenia fluviatilis from the Murray–Darling Basin (MDB) depicting (a)
K = 2, (b) K = 3 and (c) the most likely number of clusters determined by cross‐validation procedure using TESS3, K = 6

F IGURE 3 Multiple matrix regression with randomization (MMRR) plots for (a) isolation by distance (IBD) and (b) StreamTree analyses. The
IBD plot depicts the relationship between pairwise FST based on 16,165 neutral SNPs and riverine distance between sampling sites
(R2 = 0.337, p = 0.0002). The StreamTree plot compares fitted distance based on the StreamTree model with the observed pairwise FST values
(R2 = 0.976, p = 0.0001)
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heterogeneity should be routinely considered when assessing gene

flow among populations inhabiting complex spatial environments.

Moreover, results of the GEA analyses support the hypothesis that

hydroclimatic variation is driving patterns of adaptive divergence

among M. fluviatilis populations across the MDB. Seasonal variation

in stream flow, along with variation in the relationship between tem-

perature and precipitation extremes, were the primary hydroclimatic

variables associated with variation of 146 candidate adaptive loci.

4.1 | Genomic signal of adaptive divergence

Results of the two RDAs provide consistent evidence for the impor-

tance of several key hydroclimatic variables in shaping patterns of

adaptive divergence of M. fluviatilis populations across the MDB.

Seasonal variation in flow (flowPC2) was the most influential factor

in both models and appears particularly important in the divergence

of OAK from WAR and KIL, and STG from MIB, despite their relative

spatial proximity. Stream flow is highly seasonal and variable for

both STG and OAK, with only ~3% of annual flow occurring during

the driest 6 months at OAK and <1% for STG (average for all other

sites is 11.1%). In contrast, WAR, KIL and MIB all have less seasonal

flow regimes with >15% of annual runoff occurring during the driest

6 months. Variation in the temporal relationship between tempera-

ture and precipitation extremes also stands out as a central element

of selection for this species. In addition to similar flow regimes, OAK

and STG also share other similar hydroclimatic conditions with rela-

tively cool minimum temperatures, hot maximum temperatures and

rainfall mainly occurring during the warmest months. This is again

important in driving adaptive divergence between OAK and the

other two Condamine River sites with OAK experiencing warmer

temperatures (maximum temperature of hottest month, OAK 31.4°C

vs. WAR 29.4°C and KIL 28.4°C) and less rainfall during the coldest

quarter (OAK 97.4 mm vs. WAR 108.8 mm and KIL 124.1 mm). Simi-

larly, divergent responses to seasonal hydroclimatic variation are evi-

dent for M. fluviatilis from BOG and STG. BOG is much warmer in

summer (35.6°C) and has lower rainfall (particularly during cooler

periods; BOG average rainfall during the coldest quarter 64.0 mm vs.

98.3 mm for STG). Aside from the most divergent populations, a

subtler seasonal climatic gradient in selection was also detected

spanning sites with higher temperatures during the wettest months

such as WAR, KIL, BEN and WAK (upper left quadrant; Figure 3b),

transitioning to sites in the lower Murray and OAK where the tem-

perature is much cooler during wet periods (lower right quadrant;

Figure 3b). Interestingly, this pattern is particularly evident in the

StreamTree‐based RDA. Although extensive simulation and empirical

work are required before any general conclusions may be drawn, our

findings perhaps suggest that refining the models used to control for

population structure may provide increased resolution and improved

inferences of weaker multilocus GEA signals in complex spatial envi-

ronments.

These results provide evidence supporting the generality of pre-

vious findings, suggesting that similar hydroclimatic variables shape

patterns of adaptive variation for Australian freshwater fishes span-

ning a wide range of environments and life history strategies. For

instance, golden perch (Macquaria ambigua) is a large‐bodied, highly
mobile species found across the MDB. A recent riverscape genomic

study reported annual variation in stream flow and seasonal variation

in rainfall were the most important environmental determinants of

adaptive divergence for this species (Attard et al., 2018). Similarly,

Harrisson et al. (2017) found seasonal variation in temperature and

rainfall was likely driving a polygenic adaptive response in Murray

cod (Maccullochella peelii), another large‐bodied and long‐lived spe-

cies endemic to the MDB. On the other hand, southern pygmy perch

(Nannoperca australis) is a small‐bodied wetland specialist with very

low capacity for dispersal. Findings of GEA analyses for this species

again identified seasonal variation in rainfall as the predominate

TABLE 4 Results of multiple matrix regression with randomization
tests based on 16,165 neutral SNP loci for the relationship between
pairwise genetic distance (FST), and geographic distance (IBD),
StreamTree model distance, and a model including both geographic
and StreamTree distances

Model Variable Coefficient R2 p‐Value

IBD 0.616 0.337 0.0002

StreamTree 0.940 0.976 0.0001

IBD + StreamTree 0.976 0.0001

IBD −0.022 0.3926

StreamTree 0.998 0.0001

Note. p‐Values <0.001 are indicated in bold.

F IGURE 4 Spatial representation of the dendritic stream network
connecting Melanotaenia fluviatilis sampling locations in the Murray–
Darling basin (shaded). Stream sections are colour‐coded according
to StreamTree estimated FST where yellow sections contribute little
to restricting dispersal, orange sections offer intermediate resistance
to dispersal, and red stream sections are those that most inhibit
connectivity
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environmental factor influencing adaptive divergence among popula-

tions (Brauer et al., 2016). Finally, Smith et al. (unpublished) found

the largest number of candidate loci were linked to stream flow

perenniality in their study of the subtropical rainbowfish, Melanotae-

nia duboulayi. Considered in context with these studies, our findings

for M. fluviatilis add weight to a more general emerging paradigm

where temporal variation, rather than long‐term averages in hydrocli-

matic conditions appear the most salient agents of selection in Aus-

tralian riverine ecosystems.

4.2 | Gene flow and connectivity in dendritic
systems

Although IBD has been observed many times in natural popula-

tions, the strength of this relationship is often variable among, or

even within species and IBD alone is often a poor predictor of spa-

tial genetic patterns (Raeymaekers et al., 2008). One reason is that

IBD models fail to capture the potential effects of landscape

heterogeneity on patterns of dispersal and gene flow (Kalinowski et

al., 2008). This may be especially the case for freshwater species

where physical characteristics of river systems such as flow, slope

and the dendritic arrangement of streams can influence dispersal

independently of, and in addition to the effects of waterway dis-

tance (Castric, Bonney, & Bernatchez, 2001; Hébert, Danzman,

Jones, & Bernatchez, 2000; Morrissey & de Kerckhove, 2009; Pru-

nier, Dubut, Loot, Tudesque, & Blanchet, 2017). Models of gene

flow and connectivity that incorporate aspects of landscape hetero-

geneity may therefore improve understanding of spatial genetic

structure in river systems (Meeuwig, Guy, Kalinowski, & Freden-

berg, 2010). In the case of M. fluviatilis, IBD was not a good pre-

dictor of population differentiation, whereas in contrast the

StreamTree model provided a strong fit with the spatial population

structure across the MDB. This demonstrates that connectivity is

influenced more strongly by characteristics of the stream network

than by waterway distance. Specifically, stream sections connecting

tributaries to the main river channel appear to contribute a dispro-

portionally high amount to FST. This is predicted by the SHM

(Meffe & Vrijenhoek, 1988) and suggests that connectivity among

tributary populations in particular is limited by local characteristics

of the stream network.

In addition to network configuration affecting spatial patterns of

differentiation, the SHM also predicts reduced levels of genetic vari-

ation in tributaries relative to populations lower down in the stream

network (Meffe & Vrijenhoek, 1988). The levels of diversity in the

Condamine River (OAK, WAR and KIL) are higher than would be

expected under the SHM. The reason for this is unclear; however,

we hypothesize that the larger size of this tributary may have sup-

ported larger populations in the long‐term, relative to other headwa-

ter streams. Nevertheless, our results support several other findings

demonstrating that the physical structure of river systems can pro-

foundly affect spatial patterns of genetic diversity, gene flow and

metapopulation dynamics (Hébert et al., 2000; Morrissey & de Ker-

ckhove, 2009; Paz‐Vinas & Blanchet, 2015; Paz‐Vinas, Loot, Stevens,
& Blanchet, 2015; Thomaz et al., 2016). The stream sections that

appear to most inhibit connectivity, as highlighted by the StreamTree

model, are also located across the steepest hydroclimatic gradients

present in the MDB. This suggests that in addition to the effects of

dendritic network structure, environmental variation may also be

restricting dispersal among some M. fluviatilis populations; a pattern

that would be consistent with findings from studies of other fresh-

water fishes in the MDB (Faulks, Gilligan, & Beheregaray, 2010b,

2011; Lean et al., 2016).

F IGURE 5 Triplots summarizing the first two constrained axes of the partial redundancy analyses (RDA) controlling for spatial structure
using (a) a polynomial decomposition of spatial coordinates and (b) a StreamTree model of population connectivity. Sampling sites are colour‐
coded according to Figure 1 and plotted based on site scores for each RDA. Significant environmental factors (p < 0.05) are represented as
blue vectors where the length represents the magnitude of their contribution to the model and the angle between each vector represents the
correlation among variables. Colours are based on the groups depicted in Figure 2
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4.3 | Interactions among evolutionary processes

In contrast to patterns of neutral connectivity, our understanding of

how adaptive genomic variation may be influenced by evolutionary

processes other than landscape structure‐mediated gene flow

remains relatively limited. Findings here suggest that apart from

landscape heterogeneity, there may be additional factors modulating

the adaptive response to hydroclimatic selection for M. fluviatilis. For

instance, genetic variation is much lower at headwater sites in the

Murray River (WAK, BEN average 36.9% polymorphic loci) compared

to those in the Darling River (PEL, GWY, DUM, MIB, STG average

55.3% polymorphic loci). The Murray River sites are at the southern

limit of the distribution of not only M. fluviatilis, but for any member

of the otherwise tropical or subtropical Melanotaeniidae (Unmack et

al., 2013). Many examples exist of range margin populations exhibit-

ing low genetic variation and associated reduced responses to selec-

tion (Bridle & Vines, 2007; Eckert, Samis, & Lougheed, 2008;

Lenormand, 2002). Accordingly, several mechanisms have been pro-

posed to explain these phenomena including gene flow from central‐
range populations swamping locally adapted alleles (Bridle & Vines,

2007) and potential phylogenetic constraints (Comte, Murienne, &

Grenouillet, 2014). While specifically testing these hypotheses is

beyond the scope of our study, findings that the genetic architecture

of M. fluviatilis is consistent with the SHM suggest it is unlikely that

there has been sufficient gene flow from maladapted central popula-

tions to cause reduced genetic variation in the Murray River. If, how-

ever, due to their tropical origins, the entire clade of

Melanotaeniidae possess limited genetic variation for traits associ-

ated with adaptation to temperate hydroclimatic conditions, it is pos-

sible that the reduced genetic variation observed here may be the

result of deeper phylogenetic constraints leading to reduced fitness

of M. fluviatilis in temperate environments. This hypothesis is further

supported by the reproductive ecology of tropical rainbowfish spe-

cies that are thought to reduce larval mortality by concentrating

spawning effort during the more stable and benign conditions of the

dry season (Pusey, Arthington, Bird, & Close, 2001). Perhaps surpris-

ingly, the temperate M. fluviatilis similarly reproduce during the dry

months (Humphries, Serafini, & King, 2002) despite the fact that

conditions are far less predictable during the dry season in the lower

MDB.

4.4 | Riverscape genomics informing proactive
conservation measures

The spatial distribution of genetic diversity in natural populations is

shaped by a balance of evolutionary processes including gene flow

among demes and natural selection in response to environmental

variation within and among habitat patches. Dendritic riverscapes

provide a particularly challenging environment for assessing the rel-

ative influence of these processes on spatial genetic structure and

adaptive divergence of populations. By incorporating models of

landscape heterogeneity with measures of environmental variation

in a riverscape genomics analysis framework, it is possible to tease

apart the genomic signals of each. Development of spatial statisti-

cal models that better represent the unique characteristics of den-

dritic river networks, however, is needed to further improve

inferences in riverscape genomics studies. The StreamTree‐based
RDA presented in this study provides a novel and promising exam-

ple incorporating the unique effects of dendritic network structure

as well as restrictions to connectivity due to barriers and other

potentially unknown sources of resistance. The ongoing evolution

of methods to model GEAs in complex spatial environments has

nevertheless already advanced our understanding of local adapta-

tion of aquatic organisms. When combined with other genetic,

demographic and environmental data, these studies provide a pow-

erful predictive framework on which to base conservation and

water management decisions. In the case of M. fluviatilis, adaptive

divergence in response to hydroclimatic selection appears to be

mediated by a combination of landscape heterogeneity, spatially

variable patterns of dispersal and potentially, phylogenetic history.

Translating this information into conservation management practice,

however, is far from straightforward. On the one hand, anticipated

warmer temperatures across the MDB (Davis et al., 2015; Kershaw,

Moss, & Van Der Kaars, 2003; Morrongiello et al., 2011) could

potentially benefit populations at the current southern range

boundary by alleviating any genetic constraints on adaptation to

temperate conditions. In contrast, predicted concurrent increases in

environmental variability and unpredictability may simultaneously

prove detrimental for these populations by increasing the frequency

and severity of demographic fluctuations in response to extreme

weather events. This highlights the difficulties faced in predicting

evolutionary responses to changing environmental conditions (Web-

ster et al., 2017). Despite these challenges, if we are to reverse the

current global decline of freshwater biodiversity, proactive conser-

vation management is needed to restore evolutionary processes

across fragmented and degraded river basins (Brauer, Unmack, &

Beheregaray, 2017; Brauer et al., 2016). In this case, we argue that

monitoring and, in some cases, management of populations should

ideally occur before a species situation becomes critical. This will

provide conservation practitioners with more options than may

otherwise be available once a species has declined to the point

they are formally considered threatened. In the context of this

study, although M. fluviatilis are presently only considered threat-

ened in the Murray River (DELWP 2018), widespread natural and

anthropogenic disturbance is likely already impacting the species

across the whole MDB and will continue to threaten populations in

future. We identified complex patterns of connectivity operating at

a range of spatial scales and in response to several aspects of land-

scape heterogeneity and hydroclimatic variation. Water manage-

ment practices that continue to degrade habitat and alter natural

flow regimes will further disrupt metapopulation dynamics, leaving

isolated populations more vulnerable to stochastic demographic

decline. Additionally, the effects of human disturbance are likely

already being compounded by the simultaneous and rapid changes

in climate that will further threaten the persistence of many MDB

species.

BRAUER ET AL. | 11



ACKNOWLEDGEMENTS

Collections were obtained under permits from various state fisheries

agencies, and research is under Flinders University Animal Welfare

Committee approval E342. We thank Minami Sasaki for laboratory

assistance. We also thank Michael Hansen and two anonymous

reviewers for their comments which improved the manuscript. Finan-

cial support was provided by the Australian Research Council via a

Future Fellowship project to L. B. B. (FT130101068) and Discovery

projects DP110101207 and DP150102903 to L. B. B. and L. B.

DATA ACCESSIBILITY

Raw demultiplexed sequences are available on NCBI SRA database

(SRA accession: SRP151519). Reference sequences for the 17,503

loci, SNP genotypes, environmental data and a custom R script to

replicate the RDA analysis can be accessed on Dryad: https://doi.

org/10.5061/dryad.t2v8825.

AUTHOR CONTRIBUTIONS

The study was designed by L.B.B., L.B. and C.J.B. The data were

analysed and generated by C.J.B. and S.S. with assistance from

P.J.U., L.B. and L.B.B. The manuscript was written by C.J.B. and

L.B.B. with input from S.S., P.J.U. and L.B.

ORCID

Luciano B. Beheregaray http://orcid.org/0000-0003-0944-3003

REFERENCES

Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and

the future of conservation genetics. Nature Reviews Genetics, 11,

697–709. https://doi.org/10.1038/nrg2844
Attard, C. R. M., Brauer, C. J., Sandoval-Castillo, J., Faulks, L. K., Unmack,

P. J., Gilligan, D. M., & Beheregaray, L. B. (2018). Ecological distur-

bance influences adaptive divergence despite high gene flow in

golden perch (Macquaria ambigua): Implications for management and

resilience to climate change. Molecular Ecology, 27, 196–215.
https://doi.org/10.1111/mec.14438

Attard, C., Möller, L., Sasaki, M., Hammer, M. P., Bice, C. M., Brauer, C.

J., … Beheregaray, L. B. (2016). A novel holistic framework for

genetic‐based captive‐breeding and reintroduction programs. Conser-

vation Biology, 30, 1060–1069. https://doi.org/10.1111/cobi.12699
Balcombe, S. R., Sheldon, F., Capon, S. J., Bond, N., Hadwen, W., Marsh,

N., & Bernays, S. (2011). Climate‐change threats to native fish in

degraded rivers and floodplains of the Murray‐Darling Basin, Aus-

tralia. Marine and Freshwater Research, 62, 1099–1114. https://doi.

org/10.1071/MF11059

Baumgartner, L. J., & Harris, J. H. (2007). Passage of non‐salmonid fish

through a Deelder lock on a lowland river. River Research and Applica-

tions, 23, 1058–1069. https://doi.org/10.1002/(ISSN)1535-1467

Bernatchez, L. (2016). On the maintenance of genetic variation and adap-

tation to environmental change: Considerations from population

genomics in fishes. Journal of Fish Biology, 89, 2519–2556. https://d
oi.org/10.1111/jfb.13145

Bourret, V., Dionne, M., Kent, M. P., Lien, S., & Bernatchez, L. (2013).

Landscape genomics in Atlantic salmon (Salmo salar): Searching for

gene–environment interactions driving local adaptation. Evolution, 67,

3469–3487.
Brauer, C., Hammer, M., & Beheregaray, L. (2016). Riverscape genomics

of a threatened fish across a hydroclimatically heterogeneous river

basin. Molecular Ecology, 25, 5093–5113. https://doi.org/10.1111/

mec.13830

Brauer, C. J., Unmack, P. J., & Beheregaray, L. B. (2017). Comparative

ecological transcriptomics and the contribution of gene expression to

the evolutionary potential of a threatened fish. Molecular Ecology, 26,

6841–6856. https://doi.org/10.1111/mec.14432

Brauer, C. J., Unmack, P. J., Hammer, M. P., Adams, M., & Beheregaray,

L. B. (2013). Catchment‐scale conservation units identified for the

threatened Yarra pygmy perch (Nannoperca obscura) in highly modi-

fied river systems. PLoS ONE, 8, e82953. https://doi.org/10.1371/

journal.pone.0082953

Bridle, J. R., & Vines, T. H. (2007). Limits to evolution at range margins:

When and why does adaptation fail? Trends in Ecology & Evolution,

22, 140–147. https://doi.org/10.1016/j.tree.2006.11.002
Campbell Grant, E. H., Lowe, W. H., & Fagan, W. F. (2007). Living in the

branches: Population dynamics and ecological processes in dendritic

networks. Ecology Letters, 10, 165–175. https://doi.org/10.1111/j.

1461-0248.2006.01007.x

Castric, V., Bonney, F., & Bernatchez, L. (2001). Landscape structure and

hierarchical genetic diversity in the brook charr, Salvelinus fontinalis.

Evolution, 55, 1016–1028. https://doi.org/10.1554/0014-3820(2001)
055[1016:LSAHGD]2.0.CO;2

Caye, K., Deist, T. M., Martins, H., Michel, O., & François, O. (2016).

TESS3: Fast inference of spatial population structure and genome

scans for selection. Molecular Ecology Resources, 16, 540–548.
https://doi.org/10.1111/1755-0998.12471

Chiew, F., Teng, J., Kirono, D., Frost, A. J., Bathols, J. M., Vaze, J., … Cai,

W. J. (2008). Climate data for hydrologic scenario modelling across the

Murray-Darling Basin: A report to the Australian Government from the

CSIRO Murray-Darling Basin sustainable yields project. Canberra, ACT:

CSIRO.

Cole, T., Hammer, M., Unmack, P., Teske, P. R., Brauer, C. J., Adams, M.,

& Beheregaray, L. B. (2016). Range‐wide fragmentation in a threat-

ened fish associated with post‐European settlement modification in

the Murray‐Darling Basin, Australia. Conservation Genetics, 17, 1377–
1391. https://doi.org/10.1007/s10592-016-0868-8

Comte, L., Murienne, J., & Grenouillet, G. (2014). Species traits and phy-

logenetic conservatism of climate‐induced range shifts in stream

fishes. Nature Communications, 5, 5023. https://doi.org/10.1038/nc

omms6053

Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles,

M. (2005). Blast2GO: A universal tool for annotation, visualization

and analysis in functional genomics research. Bioinformatics, 21,

3674–3676.
Crowley, L., Ivantsoff, W., & Allen, G. (1986). Taxonomic position of two

crimson‐spotted rainbowfish, Melanotaenia duboulayi and Melanotae-

nia fluviatilis (Pisces : Melanotaeniidae), from eastern Australia, with

special reference to their early life‐history stages. Marine and Fresh-

water Research, 37, 385–398. https://doi.org/10.1071/MF9860385

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M.

A., … 1000 Genomes Project Analysis Group (2011). The variant call

format and VCFtools. Bioinformatics, 27, 2156–2158. https://doi.org/
10.1093/bioinformatics/btr330

Davies, P., Harris, J., Hillman, T., & Walker, K. (2010). The sustainable riv-

ers audit: Assessing river ecosystem health in the Murray‐Darling

Basin, Australia. Marine and Freshwater Research, 61, 764–777.
https://doi.org/10.1071/MF09043

Davis, C. D., Epps, C. W., Flitcroft, R. L., & Banks, M. A. (2017). Refining

and defining riverscape genetics: How rivers influence population

12 | BRAUER ET AL.

https://doi.org/10.5061/dryad.t2v8825
https://doi.org/10.5061/dryad.t2v8825
http://orcid.org/0000-0003-0944-3003
http://orcid.org/0000-0003-0944-3003
http://orcid.org/0000-0003-0944-3003
https://doi.org/10.1038/nrg2844
https://doi.org/10.1111/mec.14438
https://doi.org/10.1111/cobi.12699
https://doi.org/10.1071/MF11059
https://doi.org/10.1071/MF11059
https://doi.org/10.1002/(ISSN)1535-1467
https://doi.org/10.1111/jfb.13145
https://doi.org/10.1111/jfb.13145
https://doi.org/10.1111/mec.13830
https://doi.org/10.1111/mec.13830
https://doi.org/10.1111/mec.14432
https://doi.org/10.1371/journal.pone.0082953
https://doi.org/10.1371/journal.pone.0082953
https://doi.org/10.1016/j.tree.2006.11.002
https://doi.org/10.1111/j.1461-0248.2006.01007.x
https://doi.org/10.1111/j.1461-0248.2006.01007.x
https://doi.org/10.1554/0014-3820(2001)055[1016:LSAHGD]2.0.CO;2
https://doi.org/10.1554/0014-3820(2001)055[1016:LSAHGD]2.0.CO;2
https://doi.org/10.1111/1755-0998.12471
https://doi.org/10.1007/s10592-016-0868-8
https://doi.org/10.1038/ncomms6053
https://doi.org/10.1038/ncomms6053
https://doi.org/10.1071/MF9860385
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1071/MF09043


genetic structure. Wiley Interdisciplinary Reviews: Water, 5(2), e1269.

https://doi.org/10.1002/wat1002.1269

Davis, J., O'Grady, A. P., Dale, A., Arthington, A. H., Gell, P. A., Driver, P.

D., … Specht, A. (2015). When trends intersect: The challenge of

protecting freshwater ecosystems under multiple land use and hydro-

logical intensification scenarios. Science of the Total Environment, 534,

65–78. https://doi.org/10.1016/j.scitotenv.2015.03.127
DELWP (2018) The Flora and Fauna Guarantee Act 1988. Victorian

Government Department of Environment, Land, Water and Planning.

Retrieved from https://www.environment.vic.gov.au/conserving-threa

tened-species/flora-and-fauna-guarantee-act-1988

Dray, S., Legendre, P., & Blanchet, F. G. (2016). packfor: Forward Selection

with permutation R package version 0.0-8/r136. Retrieved from

https://R-Forge.R-project.org/projects/sedar/

Dyer, R. J., Nason, J. D., & Garrick, R. C. (2010). Landscape modelling of

gene flow: Improved power using conditional genetic distance

derived from the topology of population networks. Molecular Ecology,

19, 3746–3759. https://doi.org/10.1111/j.1365-294X.2010.04748.x
Eckert, C. G., Samis, K. E., & Lougheed, S. C. (2008). Genetic variation

across species’ geographical ranges: The central–marginal hypothesis

and beyond. Molecular Ecology, 17, 1170–1188. https://doi.org/10.

1111/j.1365-294X.2007.03659.x

Faulks, L. K., Gilligan, D. M., & Beheregaray, L. B. (2010a). Evolution and

maintenance of divergent lineages in an endangered freshwater fish,

Macquaria australasica. Conservation Genetics, 11, 921–934. https://d
oi.org/10.1007/s10592-009-9936-7

Faulks, L. K., Gilligan, D. M., & Beheregaray, L. B. (2010b). Islands of

water in a sea of dry land: Hydrological regime predicts genetic diver-

sity and dispersal in a widespread fish from Australia's arid zone, the

golden perch (Macquaria ambigua). Molecular Ecology, 19, 4723–4737.
https://doi.org/10.1111/j.1365-294X.2010.04848.x

Faulks, L. K., Gilligan, D. M., & Beheregaray, L. B. (2011). The role of

anthropogenic vs. natural in‐stream structures in determining connec-

tivity and genetic diversity in an endangered freshwater fish, Mac-

quarie perch (Macquaria australasica). Evolutionary Applications, 4,

589–601. https://doi.org/10.1111/j.1752-4571.2011.00183.x
Foll, M., & Gaggiotti, O. (2006). Identifying the environmental factors that

determine the genetic structure of populations. Genetics, 174, 875–891.
Foll, M., & Gaggiotti, O. (2008). A genome‐scan method to identify

selected loci appropriate for both dominant and codominant markers:

A bayesian perspective. Genetics, 180, 977–993.
Forester, B. R., Jones, M. R., Joost, S., Landguth, E. L., & Lasky, J. R.

(2015). Detecting spatial genetic signatures of local adaptation in

heterogeneous landscapes. Molecular Ecology, 25, 104–120.
Forester, B. R., Lasky, J. R., Wagner, H. H., & Urban, D. L. (2018). Com-

paring methods for detecting multilocus adaptation with multivariate

genotype‐environment associations. Molecular Ecology, 27, 2215–
2233. https://doi.org/10.1111/mec.14584

Fourcade, Y., Chaput-Bardy, A., Secondi, J., Fleurant, C., & Lemaire, C.

(2013). Is local selection so widespread in river organisms? Fractal geom-

etry of river networks leads to high bias in outlier detection. Molecular

Ecology, 22, 2065–2073. https://doi.org/10.1111/mec.12158

Geoscience Australia. (2011). National surface water information.

Retrieved from http://www.ga.gov.au/topographic-mapping/national-

surface-water-information.html

Harrisson, K. A., Amish, S. J., Pavlova, A., Narum, S. R., Telonis-Scott, M.,

Rourke, M. L., … Sunnucks, P. (2017). Signatures of polygenic adap-

tation associated with climate across the range of a threatened fish

species with high genetic connectivity. Molecular Ecology, 26, 6253–
6269. https://doi.org/10.1111/mec.14368

Hébert, C., Danzman, R. G., Jones, M. W., & Bernatchez, L. (2000).

Hydrography and population genetic structure in brook charr (Salveli-

nus fontinalis, Mitchill) from eastern Canada. Molecular Ecology, 9,

971–982. https://doi.org/10.1046/j.1365-294x.2000.00965.x

Hopken, M. W., Douglas, M. R., & Douglas, M. E. (2013). Stream hierar-

chy defines riverscape genetics of a North American desert fish.

Molecular Ecology, 22, 956–971. https://doi.org/10.1111/mec.12156

Hu, Z.-L., Bao, J., & Reecy, J. M. (2008). CateGOrizer: A web‐based pro-

gram to batch analyze gene ontology classification categories. Online

Journal of Bioinformatics, 9, 108–112.
Huey, J. A., Baker, A. M., & Hughes, J. M. (2006). Patterns of gene flow

in two species of eel‐tailed catfish, Neosilurus hyrtlii and Porochilus

argenteus (Siluriformes: Plotosidae), in western Queensland's dryland

rivers. Biological Journal of the Linnean Society, 87, 457–467. https://d
oi.org/10.1111/j.1095-8312.2006.00590.x

Hughes, J. M., Schmidt, D. J., & Finn, D. S. (2009). Genes in streams:

Using DNA to understand the movement of freshwater fauna and

their riverine habitat. BioScience, 59, 573–583. https://doi.org/10.

1525/bio.2009.59.7.8

Humphries, P., Serafini, L. G., & King, A. J. (2002). River regulation and

fish larvae: Variation through space and time. Freshwater Biology, 47,

1307–1331. https://doi.org/10.1046/j.1365-2427.2002.00871.x
Kalinowski, S. T., Meeuwig, M. H., Narum, S. R., & Taper, M. L. (2008).

Stream trees: A statistical method for mapping genetic differences

between populations of freshwater organisms to the sections of

streams that connect them. Canadian Journal of Fisheries and Aquatic

Sciences, 65, 2752–2760. https://doi.org/10.1139/F08-171
Kershaw, P., Moss, P., & Van Der Kaars, S. (2003). Causes and conse-

quences of long‐term climatic variability on the Australian continent.

Freshwater Biology, 48, 1274–1283. https://doi.org/10.1046/j.1365-

2427.2003.01085.x

Kingsford, R. T. (2000). Ecological impacts of dams, water diversions and

river management on floodplain wetlands in Australia. Austral Ecology,

25, 109–127. https://doi.org/10.1046/j.1442-9993.2000.01036.x
Le Corre, V., & Kremer, A. (2012). The genetic differentiation at quantita-

tive trait loci under local adaptation. Molecular Ecology, 21, 1548–
1566. https://doi.org/10.1111/j.1365-294X.2012.05479.x

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for mul-

tivariate analysis. Journal of Statistical Software, 25, 1–18.
Lean, J., Hammer, M., Unmack, P., Adams, M., & Beheregaray, L. (2016).

Landscape genetics informs mesohabitat preference and conservation

priorities for a surrogate indicator species in a highly fragmented

river system. Heredity, 118, 374–384.
Leblanc, M., Tweed, S., Van Dijk, A., & Timbal, B. (2012). A review of his-

toric and future hydrological changes in the Murray‐Darling Basin.

Global and Planetary Change, 80–81, 226–246. https://doi.org/10.

1016/j.gloplacha.2011.10.012

Lenormand, T. (2002). Gene flow and the limits to natural selection.

Trends in Ecology & Evolution, 17, 183–189. https://doi.org/10.1016/
S0169-5347(02)02497-7

Li, H. (2014). Toward better understanding of artifacts in variant calling

from high‐coverage samples. Bioinformatics, 30, 2843–2851. https://d
oi.org/10.1093/bioinformatics/btu356

Lintermans, M. (2007). Fishes of the Murray-Darling Basin: An introductory

guide. Canberra, ACT: Murray-Darling Basin Commission.

Luikart, G., England, P. R., Tallmon, D., Jordan, S., & Taberlet, P. (2003).

The power and promise of population genomics: From genotyping to

genome typing. Nature Reviews Genetics, 4, 981–994. https://doi.org/
10.1038/nrg1226

Manel, S., & Holderegger, R. (2013). Ten years of landscape genetics.

Trends in Ecology & Evolution, 28, 614–621. https://doi.org/10.1016/j.
tree.2013.05.012

Manel, S., Schwartz, M. K., Luikart, G., & Taberlet, P. (2003). Landscape

genetics: Combining landscape ecology and population genetics.

Trends in Ecology & Evolution, 18, 189–197. https://doi.org/10.1016/
S0169-5347(03)00008-9

McGuigan, K., Zhu, D., Allen, G., & Moritz, C. (2000). Phylogenetic rela-

tionships and historical biogeography of melanotaeniid fishes in

BRAUER ET AL. | 13

https://doi.org/10.1002/wat1002.1269
https://doi.org/10.1016/j.scitotenv.2015.03.127
https://www.environment.vic.gov.au/conserving-threatened-species/flora-and-fauna-guarantee-act-1988
https://www.environment.vic.gov.au/conserving-threatened-species/flora-and-fauna-guarantee-act-1988
https://R-Forge.R-project.org/projects/sedar/
https://doi.org/10.1111/j.1365-294X.2010.04748.x
https://doi.org/10.1111/j.1365-294X.2007.03659.x
https://doi.org/10.1111/j.1365-294X.2007.03659.x
https://doi.org/10.1007/s10592-009-9936-7
https://doi.org/10.1007/s10592-009-9936-7
https://doi.org/10.1111/j.1365-294X.2010.04848.x
https://doi.org/10.1111/j.1752-4571.2011.00183.x
https://doi.org/10.1111/mec.14584
https://doi.org/10.1111/mec.12158
http://www.ga.gov.au/topographic-mapping/national-surface-water-information.html
http://www.ga.gov.au/topographic-mapping/national-surface-water-information.html
https://doi.org/10.1111/mec.14368
https://doi.org/10.1046/j.1365-294x.2000.00965.x
https://doi.org/10.1111/mec.12156
https://doi.org/10.1111/j.1095-8312.2006.00590.x
https://doi.org/10.1111/j.1095-8312.2006.00590.x
https://doi.org/10.1525/bio.2009.59.7.8
https://doi.org/10.1525/bio.2009.59.7.8
https://doi.org/10.1046/j.1365-2427.2002.00871.x
https://doi.org/10.1139/F08-171
https://doi.org/10.1046/j.1365-2427.2003.01085.x
https://doi.org/10.1046/j.1365-2427.2003.01085.x
https://doi.org/10.1046/j.1442-9993.2000.01036.x
https://doi.org/10.1111/j.1365-294X.2012.05479.x
https://doi.org/10.1016/j.gloplacha.2011.10.012
https://doi.org/10.1016/j.gloplacha.2011.10.012
https://doi.org/10.1016/S0169-5347(02)02497-7
https://doi.org/10.1016/S0169-5347(02)02497-7
https://doi.org/10.1093/bioinformatics/btu356
https://doi.org/10.1093/bioinformatics/btu356
https://doi.org/10.1038/nrg1226
https://doi.org/10.1038/nrg1226
https://doi.org/10.1016/j.tree.2013.05.012
https://doi.org/10.1016/j.tree.2013.05.012
https://doi.org/10.1016/S0169-5347(03)00008-9
https://doi.org/10.1016/S0169-5347(03)00008-9


Australia and New Guinea. Marine and Freshwater Research, 51, 713–
723. https://doi.org/10.1071/MF99159

Meeuwig, M. H., Guy, C. S., Kalinowski, S. T., & Fredenberg, W. A.

(2010). Landscape influences on genetic differentiation among bull

trout populations in a stream‐lake network. Molecular Ecology, 19,

3620–3633. https://doi.org/10.1111/j.1365-294X.2010.04655.x
Meffe, G. K., & Vrijenhoek, R. C. (1988). Conservation genetics in the

management of desert fishes. Conservation Biology, 2, 157–169.
https://doi.org/10.1111/j.1523-1739.1988.tb00167.x

Meirmans, P. G. (2015). Seven common mistakes in population genetics

and how to avoid them. Molecular Ecology, 24, 3223–3231. https://d
oi.org/10.1111/mec.13243

Meirmans, P. G., & Van Tienderen, P. H. (2004). GenoType and GenoD-

ive: Two programs for the analysis of genetic diversity of asexual

organisms. Molecular Ecology Notes, 4, 792–794. https://doi.org/10.
1111/j.1471-8286.2004.00770.x

Morrissey, M. B., & de Kerckhove, D. T. (2009). The maintenance of

genetic variation due to asymmetric gene flow in dendritic metapop-

ulations. The American Naturalist, 174, 875–889. https://doi.org/10.
1086/648311

Morrongiello, J. R., Beatty, S. J., Bennett, J. C., Crook, D. A., Ikedife, D.

N. E. N., Kennard, M. J., … Rayner, T. (2011). Climate change and its

implications for Australia's freshwater fish. Marine and Freshwater

Research, 62, 1082–1098. https://doi.org/10.1071/MF10308

Murray–Darling Basin Authority (2010). Guide to the proposed basin plan:

Overview. Canberra, ACT: Murray–Darling Basin Authority.

Paz-Vinas, I., & Blanchet, S. (2015). Dendritic connectivity shapes spatial

patterns of genetic diversity: A simulation‐based study. Journal of

Evolutionary Biology, 28, 986–994. https://doi.org/10.1111/jeb.

12626

Paz-Vinas, I., Loot, G., Stevens, V. M., & Blanchet, S. (2015). Evolutionary

processes driving spatial patterns of intraspecific genetic diversity in

river ecosystems. Molecular Ecology, 24, 4586–4604. https://doi.org/
10.1111/mec.13345

Poland, J. A., Brown, P. J., Sorrells, M. E., & Jannink, J.-L. (2012). Devel-

opment of high‐density genetic maps for barley and wheat using a

novel two‐enzyme genotyping‐by‐sequencing approach. PLoS ONE, 7,

e32253. https://doi.org/10.1371/journal.pone.0032253

Pritchard, J. K., & Di Rienzo, A. (2010). Adaptation–not by sweeps alone.

Nature Reviews Genetics, 11, 665–667. https://doi.org/10.1038/

nrg2880

Prunier, J. G., Dubut, V., Loot, G., Tudesque, L., & Blanchet, S. (2017). The

relative contribution of river network structure and anthropogenic

stressors to spatial patterns of genetic diversity in two freshwater

fishes: A multiple‐stressors approach. Freshwater Biology, 63, 6–21.
Puritz, J. B., Hollenbeck, C. M., & Gold, J. R. (2014). dDocent: A RADseq,

variant‐calling pipeline designed for population genomics of non‐
model organisms. PeerJ, 2, e431. https://doi.org/10.7717/peerj.431

Pusey, B. J., Arthington, A. H., Bird, J. R., & Close, P. G. (2001). Repro-

duction in three species of rainbowfish (Melanotaeniidae) from rain-

forest streams in northern Queensland, Australia. Ecology of

Freshwater Fish, 10, 75–87. https://doi.org/10.1034/j.1600-0633.

2001.100202.x

Raeymaekers, J. A. M., Maes, G. E., Geldof, S., Hontis, I., Nackaerts, K., &

Volckaert, F. A. (2008). Modeling genetic connectivity in sticklebacks

as a guideline for river restoration. Evolutionary Applications, 1, 475–
488. https://doi.org/10.1111/j.1752-4571.2008.00019.x

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. (2018).

Posterior summarisation in Bayesian phylogenetics using Tracer 1.7.

Systematic Biology, https://doi.org/10.1093/sysbio/syy032

Rosenberg, N. A. (2004). distruct: A program for the graphical display of

population structure. Molecular Ecology Notes, 4, 137–138.
Schielzeth, H. (2010). Simple means to improve the interpretability of

regression coefficients. Methods in Ecology and Evolution, 1, 103–113.
https://doi.org/10.1111/j.2041-210X.2010.00012.x

Smith, S., Brauer, C., Sasaki, M., Unmack, P. J., Guillot, G., Laporte, M., …
Beheregaray, L. B. (unpublished). Populations at ecological limits lack

functional genetic variation to cope with a changing climate.

Stein, J., Hutchinson, M., & Stein, J. (2014). A new stream and nested

catchment framework for Australia. Hydrology and Earth System

Sciences, 18, 1917–1933. https://doi.org/10.5194/hess-18-1917-

2014

Sunnucks, P., & Hales, D. F. (1996). Numerous transposed sequences of

mitochondrial cytochrome oxidase I‐II in aphids of the genus Sitobion

(Hemiptera: Aphididae). Molecular Biology and Evolution, 13, 510–524.
https://doi.org/10.1093/oxfordjournals.molbev.a025612

Thomaz, A. T., Christie, M. R., & Knowles, L. L. (2016). The architecture

of river networks can drive the evolutionary dynamics of aquatic

populations. Evolution, 70, 731–739. https://doi.org/10.1111/evo.

12883

Tonkin, J. D., Altermatt, F., Finn, D. S., Heino, J., Olden, J. D., Pauls, S. U.,

& Lytle, D. A. (2017). The role of dispersal in river network metacom-

munities: Patterns, processes, and pathways. Freshwater Biology, 63,

141–163.
Unmack, P. J., Allen, G. R., & Johnson, J. B. (2013). Phylogeny and bio-

geography of rainbowfishes (Melanotaeniidae) from Australia and

New Guinea. Molecular Phylogenetics and Evolution, 67, 15–27.
https://doi.org/10.1016/j.ympev.2012.12.019

Wang, I. J. (2013). Examining the full effects of landscape heterogeneity

on spatial genetic variation: A multiple matrix regression approach for

quantifying geographic and ecological isolation. Evolution, 67, 3403–
3411. https://doi.org/10.1111/evo.12134

Webster, M. S., Colton, M. A., Darling, E. S., Armstrong, J., Pinsky, M. L.,

Knowlton, N., & Schindler, D. E. (2017). Who should pick the winners

of climate change? Trends in Ecology & Evolution, 32, 167–173.
https://doi.org/10.1016/j.tree.2016.12.007

Weir, B. S., & Cockerham, C. C. (1984). Estimating F‐statistics for the

analysis of population structure. Evolution, 38, 1358–1370.
Wilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migra-

tion rates using multilocus genotypes. Genetics, 163, 1177–1191.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Brauer CJ, Unmack PJ, Smith S,

Bernatchez L, Beheregaray LB. On the roles of landscape

heterogeneity and environmental variation in determining

population genomic structure in a dendritic system. Mol Ecol.

2018;00:1–14. https://doi.org/10.1111/mec.14808

14 | BRAUER ET AL.

https://doi.org/10.1071/MF99159
https://doi.org/10.1111/j.1365-294X.2010.04655.x
https://doi.org/10.1111/j.1523-1739.1988.tb00167.x
https://doi.org/10.1111/mec.13243
https://doi.org/10.1111/mec.13243
https://doi.org/10.1111/j.1471-8286.2004.00770.x
https://doi.org/10.1111/j.1471-8286.2004.00770.x
https://doi.org/10.1086/648311
https://doi.org/10.1086/648311
https://doi.org/10.1071/MF10308
https://doi.org/10.1111/jeb.12626
https://doi.org/10.1111/jeb.12626
https://doi.org/10.1111/mec.13345
https://doi.org/10.1111/mec.13345
https://doi.org/10.1371/journal.pone.0032253
https://doi.org/10.1038/nrg2880
https://doi.org/10.1038/nrg2880
https://doi.org/10.7717/peerj.431
https://doi.org/10.1034/j.1600-0633.2001.100202.x
https://doi.org/10.1034/j.1600-0633.2001.100202.x
https://doi.org/10.1111/j.1752-4571.2008.00019.x
https://doi.org/10.1093/sysbio/syy032
https://doi.org/10.1111/j.2041-210X.2010.00012.x
https://doi.org/10.5194/hess-18-1917-2014
https://doi.org/10.5194/hess-18-1917-2014
https://doi.org/10.1093/oxfordjournals.molbev.a025612
https://doi.org/10.1111/evo.12883
https://doi.org/10.1111/evo.12883
https://doi.org/10.1016/j.ympev.2012.12.019
https://doi.org/10.1111/evo.12134
https://doi.org/10.1016/j.tree.2016.12.007
https://doi.org/10.1111/mec.14808

