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Abstract

There has been remarkably little attention to using the high resolution provided by

genotyping-by-sequencing (i.e., RADseq and similar methods) for assessing related-

ness in wildlife populations. A major hurdle is the genotyping error, especially allelic

dropout, often found in this type of data that could lead to downward-biased, yet

precise, estimates of relatedness. Here, we assess the applicability of genotyping-

by-sequencing for relatedness inferences given its relatively high genotyping error

rate. Individuals of known relatedness were simulated under genotyping error, allelic

dropout and missing data scenarios based on an empirical ddRAD data set, and their

true relatedness was compared to that estimated by seven relatedness estimators.

We found that an estimator chosen through such analyses can circumvent the influ-

ence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175)

shown to be unaffected by allelic dropout and to be the most accurate when there

is genotyping error. We also found that the choice of estimator should not rely

solely on the strength of correlation between estimated and true relatedness as a

strong correlation does not necessarily mean estimates are close to true relatedness.

We also demonstrated how even a large SNP data set with genotyping error (allelic

dropout or otherwise) or missing data still performs better than a perfectly geno-

typed microsatellite data set of tens of markers. The simulation-based approach

used here can be easily implemented by others on their own genotyping-by-sequen-

cing data sets to confirm the most appropriate and powerful estimator for their

data.
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1 | INTRODUCTION

Next-generation sequencing has allowed us to answer questions

about ecology and evolution that were once confined to our imagi-

nation. The orders of magnitude increase in marker numbers in

genomic (i.e., genome-wide) data results in greater power for use in

traditional analyses that are based on neutral loci and the ability to

identify the small proportion of adaptive loci in the genome (Allen-

dorf, Hohenlohe, & Luikart, 2010; Narum, Buerkle, Davey, Miller, &

Hohenlohe, 2013; Stapley et al., 2010). Genotyping-by-sequencing

(i.e., RADseq and similar methods) in particular allows markers to be

simultaneously identified and genotyped, avoiding the need to first

develop a panel of markers that then have inherent bias when new

populations are surveyed (Davey et al., 2011). However, there has

been remarkably little attention to using genotyping-by-sequencing

for research that especially requires high resolution, such as ques-

tions that require identifying related individuals in the absence of a

known pedigree. Ecologically relevant research that would benefit

Received: 29 June 2017 | Revised: 2 November 2017 | Accepted: 2 November 2017

DOI: 10.1111/1755-0998.12739

Mol Ecol Resour. 2018;1–10. wileyonlinelibrary.com/journal/men © 2017 John Wiley & Sons Ltd | 1

http://orcid.org/0000-0003-1157-570X
http://orcid.org/0000-0003-1157-570X
http://orcid.org/0000-0003-1157-570X
http://orcid.org/0000-0003-0944-3003
http://orcid.org/0000-0003-0944-3003
http://orcid.org/0000-0003-0944-3003
http://orcid.org/0000-0002-7293-5847
http://orcid.org/0000-0002-7293-5847
http://orcid.org/0000-0002-7293-5847
http://wileyonlinelibrary.com/journal/MEN


from identifying related individuals includes investigations of breed-

ing behaviour, social structure, inbreeding and inbreeding depression,

and population demographics and connectivity (Coleman & Jones,

2011; Iacchei et al., 2013; Kjeldsen et al., 2016; M€oller, 2012; Nor-

man et al., 2017; Palsbøll, Peery, & B�erub�e, 2010; Peery et al., 2008;

Ross, 2001). Related individuals can be identified by estimating relat-

edness or inferring kinship categories: relatedness is a continuous

measure of the proportion of alleles in a dyad (i.e., in a pair of indi-

viduals, regardless of whether the pair was observed together) that

are identical by descent (IDB) relative to a reference population; kin-

ship categories are discrete categories of dyad relationship such as

parent–offspring or full-sibling.

Estimating relatedness or inferring kinship categories with molec-

ular markers has traditionally been conducted using microsatellites

(Jones, Small, Paczolt, & Ratterman, 2010; Pemberton, 2008).

Microarray technology and, more recently, next-generation sequenc-

ing have opened up the possibility of using SNPs (Davey et al.,

2011; Glaubitz, Rhodes, & Dewoody, 2003). SNPs are less informa-

tive per locus than microsatellites for identifying related individuals

because they are bi-allelic and often more skewed in allele fre-

quency, but they can make up for this by their greater abundance in

the genome and therefore the potential for much larger marker sets.

For model organisms and organisms of agricultural importance, there

are now commercial SNP panels that contain thousands to hundreds

of thousands of SNPs used for marker–trait association studies and

genomic selection for breeding (Goddard & Hayes, 2007, 2009; Pe’er

et al., 2006). In nonmodel species, time and expense have been

placed into developing SNP panels of typically several tens to hun-

dreds of loci to infer relationships (Kaiser et al., 2017; Labuschagne,

Nupen, Kotz�e, Grobler, & Dalton, 2015; Liu, Palti, Gao, & Rexroad Iii,

2016; Weinman, Solomon, & Rubenstein, 2015; Wright et al., 2015),

or effort has been placed into assessing commercially available SNP

panels for cross-amplification in these species (Haynes & Latch,

2012; Ivy, Putnam, Navarro, Gurr, & Ryder, 2016). SNP panels have

been shown to be as powerful as (Glaubitz et al., 2003; Kaiser et al.,

2017; Weinman et al., 2015) or more powerful (Labuschagne et al.,

2015; Santure et al., 2010) than microsatellite data sets.

SNP panels have little genotyping error, have little missing data,

and are highly repeatable compared with genotyping-by-sequencing

data (Hoffman et al., 2012; Nielsen, Paul, Albrechtsen, & Song,

2011), making them a safe option for relatedness analyses. However,

genotyping-by-sequencing is arguably the most popular approach

currently used in population genomic studies of nonmodel organisms

(Catchen et al., 2017; Narum et al., 2013). Studies that have com-

pared genotyping-by-sequencing data of thousands of SNPs with

traditional microsatellite data for relatedness analyses have sug-

gested that the former shows better performance (e.g., Hellmann

et al., 2016; Hoffmann et al., 2014; Ra�si�c, Filipovi�c, Weeks, & Hoff-

mann, 2014), potentially making genotyping-by-sequencing a viable

option for assessing relatedness in wildlife populations. However, we

have found no study that has assessed how the relatively high geno-

typing error and missing data in genotyping-by-sequencing data sets

may influence relatedness estimates (see literature search in Meth-

ods). Genotyping error in genotyping-by-sequencing data also

includes allelic dropout, which occurs because of the high chance for

only one of the two alleles to be sampled at relatively low depths of

coverage. When only one of two alleles is sampled, a homozygote

will be called correctly as a homozygote, but a heterozygote may be

called incorrectly as a homozygote of the sampled allele. Note that

this meaning of allelic dropout is different to that often used in the

RAD literature to refer to null alleles from a mutation in the restric-

tion enzyme cut site (e.g., Gautier et al., 2013), which is more pre-

dominant when comparing highly divergent populations or species,

and therefore not examined further here. While the genotyping error

and allelic dropout of typical genotyping-by-sequencing data sets are

not thought to influence population-level analyses (Buerkle & Gom-

pert, 2013), it could influence higher-resolution analyses such as

when estimating relatedness and inferring kinship categories. Large

data sets that are analysed poorly can produce precisely biased

results (e.g., Peery et al., 2013). This is when there is little variance

around the result (i.e., high precision), which may give the appear-

ance of confidence in the result, but actually, the result is not close

to the true value (i.e., low accuracy). For relatedness analyses using

genotyping-by-sequencing, there is the expectation of high precision

due to the large number of markers, but decreased accuracy through

downward-biased estimates due to genotyping error.

The issue of genotyping error, including allelic dropout, could

perhaps be circumvented by choosing a relatedness estimator that is

most appropriate for the data set at hand. It is well known from

microsatellites that the accuracy and precision of a particular related-

ness estimator depends on the data set, altering with the number of

loci, number of alleles, allele frequency distribution and relationship

structure in the population (Van de Casteele, Galbusera, & Matthy-

sen, 2001). Ideally, the power and reliability of different estimators

should be assessed to choose the most appropriate estimator for the

data. This requires knowing the true relatedness or kinship cate-

gories of a number of individuals, and then assessing how close are

different relatedness estimates to the true relatedness (e.g., Santure

et al., 2010). Unfortunately, it is rare for pedigrees to be well known

when studying wild populations. A solution to this is to use known

relationships simulated from empirical data (Taylor, 2015; Wang,

2011). A user-friendly simulation-based approach has already been

developed in the program COANCESTRY with microsatellites in mind:

pairs of known relatedness are simulated in silico based typically on

the allele frequencies of the empirical population, the relatedness of

these simulated pairs is then estimated using the candidate related-

ness estimators, and the estimator with the strongest correlation to

true relatedness is usually chosen to estimate the relatedness of

empirical individuals (Wang, 2011). There has been poor uptake of

simulation-based approaches, even with their user-friendly availabil-

ity for microsatellite studies. A review by Taylor (2015) of literature

citing COANCESTRY highlighted that only 9% of studies used simulations

to, in some way, select and report the performance of the best esti-

mator. Negligible understanding of an estimator’s performance can
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make subsequent inferences debatable, especially when they are

about specific dyads rather than average relatedness of groups.

The behaviour of different relatedness estimators when using

thousands of bi-allelic markers with relatively high rates of genotyping

error is, to our knowledge, unknown. Here, we assess the applicability

of genotyping-by-sequencing for relatedness inferences given its rela-

tively high genotyping error rate—especially allelic dropout—and

missing data. We also demonstrate, using empirical ddRAD data, how

a user-friendly simulation-based approach can be implemented to

make such an assessment on any genotyping-by-sequencing data set.

To the best of our knowledge, this is the first time that the influence

of genotyping error, allelic dropout or missing data on relatedness esti-

mates has been assessed in genotyping-by-sequencing data sets (see

literature search in Methods). We found remarkable precision of relat-

edness estimates, despite genotyping errors and missing data, but the

choice of estimator was imperative for circumventing the downward-

biased inaccuracies caused by genotyping error and allelic dropout.

Typically used correlation assessments were found to be insufficient

for determining the most appropriate estimator; even relatedness esti-

mators that had downward-biased estimates showed > 0.99 correla-

tion to true relatedness. We also compared the empirical ddRAD data

to microsatellite data from the same population to add to the growing

evidence of the greater power of large SNP data sets for estimating

relatedness, even with high proportions of genotyping error and allelic

dropout.

2 | METHODS

2.1 | Literature search

To ascertain how SNPs have been used to date for relatedness infer-

ences in ecologically relevant studies, we searched for articles pub-

lished up to and including September 2017 in Web of Science. The

term combination used was as follows: Topic (TS) = (SNP* AND

relatedness) AND Web of Science Category (WC) = (Environmental

Sciences OR Evolutionary Biology OR Zoology OR Ecology). WC

search terms were used to avoid papers that were about agricultural

or human marker–trait association studies, or genomic selection for

breeding, which often use commercially available SNP panels. These

studies also often use realized genomic similarity (i.e., identical by

state [IBS]) rather than pedigree-based relatedness (i.e., IBD given a

reference population) (Goddard, Hayes, & Meuwissen, 2011; Speed

& Balding, 2015). Of the remaining studies, we recorded the study

species, the number of SNPs in the final data set, and whether the

SNP data was obtained through genotyping-by-sequencing or a SNP

panel (the former involving simultaneously discovering and genotyp-

ing SNPs; the latter involving genotyping a set of predefined SNPs).

We recorded whether the study assessed the robustness of the

relatedness estimates by comparing different relatedness estimators,

determining the influence of genotyping errors (including allelic drop-

out) or missing data, comparing the data set to a microsatellite data

set, or comparing the estimates to simulated or empirical individuals

of known relatedness.

2.2 | Relatedness analyses

We chose to conduct all relatedness analyses using COANCESTRY

1.0.1.6 (Wang, 2011) because it implements multiple pairwise relat-

edness estimators, has a built-in module for assessing the reliability

of different estimators by simulation, is amenable to simulating

genotyping error, allelic dropout and missing data, and has a user-

friendly interface. The relatedness estimators available in the pro-

gram are the moment estimators of Queller and Goodnight (1989),

Li, Weeks, and Chakravarti (1993), Ritland (1996), Lynch and Ritland

(1999), and Wang (2002) (which reduces to Li et al. (1993) for bi-

allelic loci (Wang, 2016)), and the dyadic maximum-likelihood estima-

tor of Milligan (2003) and triadic maximum-likelihood estimator of

Wang (2007) (we used 100 reference individuals for the triadic esti-

mator). These have already been used to estimate relatedness in

genotyping-by-sequencing data sets, but without assessing the influ-

ence of genotyping error (Escoda, Gonz�alez-Esteban, G�omez, & Cas-

tresana, 2017; de Fraga, Lima, Magnusson, Ferr~ao, & Stow, 2017;

Hellmann et al., 2016). Only the maximum-likelihood estimators have

the capability to incorporate genotyping error into their estimations,

but this requires the genotyping error rate to be known for each

locus (which is rare for genotyping-by-sequencing data), and these

estimators do not specifically consider allelic dropout, so this capabil-

ity was not considered here. As COANCESTRY and most other related-

ness or kinship category programs were designed with tens of loci in

mind, we encountered issues when using thousands of loci. We con-

sulted with the author of COANCESTRY, Jinliang Wang, who conse-

quently updated COANCESTRY (to 1.0.1.6 and 1.0.1.7) to make it

amenable to large data sets and capable of simulating allelic dropout.

We note that the R package RELATED 1.0 (Pew, Muir, Wang, & Frasier,

2015)—which is based on COANCESTRY —also has a simulation module,

but could not handle large data sets when conducting simulations at

the time of this study (T. R. Frasier pers. comm.).

We conducted our assessment using empirical data from a long-

lived animal, the blue whale (Balaenoptera musculus), and specifically

from the population of pygmy blue whales (B. m. brevicauda) inhabit-

ing Australian waters. To our knowledge, this is the first study

assessing relatedness or inferring kinship categories in blue whales,

emphasizing how this approach can be used even in nonmodel sys-

tems with nonexistent pedigree information. We chose the popula-

tion inhabiting Australian waters as we have both a genotyping-by-

sequencing data set of 8,294 filtered SNPs (n = 68) and a

microsatellite data set of 20 loci (n = 110) from this population

(Attard et al., 2018) [see Attard et al. (2010, 2012, 2015); Attard,

Beheregaray, and M€oller (2016) for associated studies], allowing a

comparison of these data types. The SNPs were developed by

preparing libraries following the ddRAD protocol of Peterson,

Weber, Kay, Fisher, and Hoekstra (2012) modified as detailed in

Brauer, Hammer, and Beheregaray (2016). Data are based on 100-bp

paired-end sequences from an Illumina HiSeq 2000, and resulting

reads were processed using the de novo pipeline of STACKS (Catchen,

Amores, Hohenlohe, Cresko, & Postlethwait, 2011; Catchen, Hohen-

lohe, Bassham, Amores, & Cresko, 2013). The final SNP data set
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consisted of SNPs that were in at least 70% of samples, had a minor

allele frequency of at least 0.05 and were the first SNP from the

associated ddRAD locus. Individuals had no more than 40% missing

data.

The most appropriate relatedness estimator for the SNP and

microsatellite data sets was assessed independently by simulating

one thousand pairs of dyads for each of four kinship categories—

unrelated, half-sibling, full-sibling and parent–offspring—based on

the allele frequencies of the empirical individuals. There is essen-

tially an infinite number of possible kinship categories that could

be simulated, and so we assessed the most common categories

considered in ecological studies. Relatedness was then estimated

for each simulated pair based on the allele frequencies of the

empirical individuals using independently the seven relatedness esti-

mators. We conducted simulations with either no missing data or

40% missing data, and either with no genotyping error, 0.04 geno-

typing error, or 0.2 allelic dropout, resulting in six different simu-

lated data sets for each marker type. While the actual genotyping

and allelic dropout rates are unknown, and can vary considerably

between individuals regardless of sample quality (Fountain, Pauli,

Reid, Palsbøll, & Peery, 2016), the same pattern in the relative per-

formance of the estimators is expected regardless of the level of

error. The amount of simulated missing data was chosen based on

our maximum allowed 40% missing data for individuals in the

empirical data. We simulated allelic dropout using a custom script

(see Data Accessibility) as the COANCESTRY version available at the

time of our analysis, 1.0.1.6, could not simulate allelic dropout

(COANCESTRY 1.0.1.7 can now simulate allelic dropout, which we rec-

ommend others to use as it is more user-friendly than the script).

The script considers each simulated heterozygous genotype, ran-

domly samples a decimal number between 0 and 1, and changes

the heterozygote to a homozygote if this number is less than the

user-supplied value for allelic dropout. The final estimator for each

data set was chosen based on the accuracy (closeness to the true

value) and precision (variation in estimated values) of each estima-

tor across kinship categories, which was assessed by calculating

means and standard deviations for each kinship category, visualiza-

tion of percentiles using box plots and the correlation to true relat-

edness as determined by Pearson’s correlation coefficient

calculated in COANCESTRY. The chosen estimator was then used for

empirical relatedness estimates.

3 | RESULTS

3.1 | Literature search

We found 63 peer-reviewed papers, 19 of which were manually

identified as ecologically relevant studies that involved estimating

relatedness using SNPs (Table S1). Of these, none assessed the influ-

ence of genotyping errors (including allelic dropout) or missing data.

Only four used genotyping-by-sequencing data; all of these were

published within the last 3 years. Two of these assessed different

relatedness estimators to choose an estimator for their study,

specifically by simulating known individuals using the R package RE-

LATED, but assuming a perfectly genotyped data set with no missing

data (Escoda et al., 2017; de Fraga et al., 2017). The SNP panel

studies had 22–771 SNPs, except for two that were based on a

commercial 65-k equine and 500-k human SNP chip but were

conservatively kept in the literature review due to their potential

ecological relevance for relatedness inferences (see Table S1). Con-

versely, the genotyping-by-sequencing data sets typically had mark-

ers in the thousands, ranging from 720 to 7,805 SNPs. The studies

that compared SNPs with microsatellites tended to conclude that

SNPs performed better (Hellmann et al., 2016; Santure et al., 2010),

except when there were a few hundred or less SNPs (Glaubitz et al.,

2003; Ross et al., 2014; Santure et al., 2010; Seddon, Parker,

Ostrander, & Ellegren, 2005), which is rare in genotyping-by-sequen-

cing studies.

3.2 | Relatedness analyses

In the simulated SNP data, relatedness estimators showed similar,

high accuracy when there was no genotyping error or allelic dropout,

and showed a decrease in their precision when there was missing

data (Figure 1; see Table S2 for means and standard deviations).

However, the estimators differed in accuracy when there was geno-

typing error or allelic dropout. Only the estimator of Ritland (1996)

was unaffected by allelic dropout for the simulated kinship cate-

gories. This estimator was also the most accurate when there was

genotyping error. Despite this, all relatedness estimators had >0.99

correlation to true relatedness for the SNPs, regardless of the simu-

lated properties of the data set (i.e., genotype error, allelic dropout

or missing data; Table 1). While Ritland (1996) tended to not be as

precise as other estimators, with it showing comparatively high vari-

ance in relatedness estimates of simulated relationships (except for

unrelated individuals; Figure 1, Table S2), the difference was consid-

ered negligible given the high precision of the SNPs and the estima-

tor’s robustness to genotyping error and allelic dropout. This led us

to choose the Ritland (1996) estimator for analysing the empirical

SNP data. In contrast, the simulated microsatellite data showed a

much lower correlation of relatedness estimates to true relatedness

(0.395–0.875; Table 1) and a lower precision compared with the

SNP data, even when SNPs were simulated under genotyping error,

allelic dropout or missing data scenarios (Figure 1; Table S2). The

dyadic maximum-likelihood estimator had the greatest correlation in

the microsatellites across all simulated scenarios, with a minimum

correlation of 0.704, which led us to choose this as the best estima-

tor for the microsatellite data.

In the empirical SNP data, we identified three first-degree rela-

tives (parent–offspring or full-sibling) (Figure 2). This was based on

these dyads having Ritland (1996) estimates from 0.492 to 0.436,

with biased downward estimates in accordance with our simulations

of genotyping error, and the next closest relatedness estimate being

0.211 and a likely second-degree relationship (half-sibling, avuncular

or grandparent–grandchild). Only under a situation of inbreeding

would one expect true relatedness values between these estimated
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values. We conservatively classified three additional dyads as sec-

ond-degree relatives based on their relatively high relatedness esti-

mates compared with the remainder of the data set, with other

relatives of lower relatedness values also detected in the data but

conservatively not classified into a kinship category. A similar cate-

gorization based on the microsatellite data using the dyadic maxi-

mum-likelihood estimator resulted in a large amount of false

positives, with 254 dyads (when only counting dyads of individuals

present in the SNP data) having an equal or greater relatedness than

the seven first- and second-degree relatives detected in the SNP

data (Figure 2). This illustrates the inability to reliably classify the

degree of relationship in even highly related individuals when using

the microsatellite data.

4 | DISCUSSION

The greater abundance of SNPs in the genome is able to counteract

their low information content per locus, leading to genome-wide

SNP data often being recognized as more powerful than traditional

microsatellite data. However, this fails to consider the relatively high

genotyping error expected from genotyping-by-sequencing, which

may influence high-resolution analyses such as relatedness estima-

tion. We showcased the use of a simulation-based approach for

assessing the reliability of relatedness estimators for genotyping-by-

sequencing data, taking into account the relatively high genotyping

error, allelic dropout and missing data rates typical of this data type.

We found that the choice of estimator can circumvent the influence
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F IGURE 1 Box plots of relatedness
estimates from simulated (a) unrelated, (b)
half-sibling, (c) full-sibling and (d) parent–
offspring dyads for SNP and microsatellite
data sets of pygmy blue whales from
Australia. Simulations consisted of 1,000
dyads per kinship category, either without
genotyping error (black), with 0.04
genotyping error (red) or with 0.2 allelic
dropout (blue). Each of these was also
simulated without missing data (first box
plot) or with 0.4 missing data (second box
plot). The boxes represent the 25–75
percentiles, and the whiskers represent the
1–99 percentiles (the 99 percentile has
been truncated to 1 in the Ritland
estimator for related dyads in
microsatellites to allow easier visualization).
Zero relatedness (solid horizontal line) and
the expected true (average or absolute)
relatedness for related categories (dashed
horizontal line) are marked
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of genotyping error and allelic dropout and that this choice should

not only rely on the degree of correlation between estimated and

true relatedness. We also showed that genotyping-by-sequencing

data with genotyping error (allelic dropout or otherwise) or missing

data can perform better than traditional microsatellite data that has

been perfectly genotyped.

Specifically, while all seven relatedness estimators assessed here

were strongly correlated with true relatedness when using the SNP

data (>0.99 for all simulations; Table 1), inference of accuracy and

precision through box plots (Figure 1) and means and standard

deviations (Table S2) revealed substantial differences in the accuracy

of the estimators under simulations of genotyping error or allelic

dropout. Therefore, unlike previous recommendations which were

based on traditional data sets (Wang, 2011), an estimator should not

be chosen based on only the strongest correlation between true and

estimated relatedness; a strong correlation inherently does not mean

the estimates are close to true relatedness. Of the seven examined

estimators, we found that only the relatedness estimator of Ritland

(1996) was not influenced by allelic dropout and that it was also the

least influenced by other genotyping errors. While Ritland (1996)

tended to not be as precise as other estimators, with it showing

comparatively high variance in relatedness estimates of simulated

relationships (except for unrelated individuals; Figure 1, Table S2),

we considered the difference in precision negligible given the high

power of the SNP data and the estimator’s robustness to genotyping

error and allelic dropout.

To the best of our knowledge, no previous study has assessed

how genotyping error and allelic dropout can influence relatedness

estimates from genotyping-by-sequencing data sets, despite the cur-

rent popularity of such data in population genomics. Most SNP-

based relatedness estimates in nonmodel organisms still rely on SNP

panels (Table S1), presumably because of their lower genotyping

error and missing data rates. The closest study found to ours was by

Escoda et al. (2017), who assessed a genotyping-by-sequencing data

set for estimating relatedness based on perfectly genotyped simula-

tions. Similar to our study, they found all estimators had >0.97 cor-

relation to true relatedness. Extremely high correlations may be

expected from genotyping-by-sequencing data due to the higher

number of markers compared with a typical SNP panel for a non-

model species or a microsatellite data set. Escoda et al. (2017) also

considered the precision of the estimators (their standard deviations

were 0.01–0.06; ours for a perfectly genotyped data set were

0.004–0.016, Table S2). Taking together their assessments of accu-

racy and precision, they named the dyadic and triadic maximum-like-

lihood estimators as the best estimators for their data. For the

TABLE 1 Pearson’s correlation coefficient between relatedness
estimates and true relatedness for simulations conducted in
COANCESTRY using different proportions of missing data, genotype
error, and allelic dropout, and using empirical data from pygmy blue
whales in Australia

Genotype error 0 0 0.04 0.04 0 0
Allelic dropout 0 0 0 0 0.2 0.2
Missing data 0 0.4 0 0.4 0 0.4

8,294 SNPs

Queller 0.998 0.998 0.998 0.997 0.997 0.996

Li 0.998 0.997 0.998 0.996 0.997 0.995

Ritland 0.998 0.997 0.997 0.996 0.997 0.995

Lynch 0.999 0.998 0.998 0.997 0.998 0.996

Wang (2002) 0.998 0.997 0.998 0.996 0.997 0.995

Milligan 0.999 0.999 0.998 0.998 0.997 0.996

Wang (2007) 0.999 0.999 0.998 0.998 0.997 0.996

20 microsatellites

Queller 0.827 0.753 0.792 0.724 0.762 0.661

Li 0.823 0.749 0.787 0.717 0.763 0.665

Ritland 0.578 0.464 0.525 0.435 0.506 0.395

Lynch 0.799 0.735 0.732 0.681 0.733 0.665

Wang (2002) 0.833 0.761 0.800 0.734 0.765 0.672

Milligan 0.875 0.803 0.832 0.764 0.800 0.704

Wang (2007) 0.871 0.796 0.821 0.751 0.790 0.686
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F IGURE 2 Relatedness estimates of
empirical dyads of pygmy blue whales from
Australia in descending order based on
SNP and microsatellite data sets and the
best chosen estimator for each data set.
These are for (a) all potential dyads for
which SNP data are available (those with
only microsatellite data are not shown to
allow easier visual comparison), with a
zoom in on (b) the 60 dyads with the
highest estimated relatedness. The first-
order relatives (red) and likely second-
order relatives (blue) detected in the SNP
data set are highlighted in both data sets
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Ritland (1996) estimator, they found it had the lowest precision

except for unrelated individuals (Escoda et al. (2017) Figure S4), as

also shown here. What they did not assess was the potential influ-

ence of genotyping error, instead choosing an estimator based on

simulations and then further filtering their SNP data so that four

duplicated samples had estimated relatedness close to one. The only

other study that made a similar assessment to Escoda et al. (2017)

and ourselves for genotyping-by-sequencing data selected Ritland

(1996) as the best estimator (de Fraga et al., 2017); this was based

on Pearson’s correlation coefficients, but we are unable to fully com-

pare the findings of their study to our own as they did not report

the coefficients. Simulations by others on their own genotyping-by-

sequencing data sets are required to ascertain whether Ritland

(1996) remains the most appropriate estimator across data sets for

mitigating the influence of genotyping error. It is now easy for

others to conduct simulations on their own data because the current

study has sparked improvements in the user-friendly program

COANCESTRY: the program is now amenable to simulating large data

sets and allelic dropout. In addition to relatedness, simulations can

also be run in COANCESTRY to assess estimates of individual inbreeding

coefficients for those interested in estimating inbreeding or investi-

gating inbreeding depression.

We also showed here, for the first time, that a genotyping-by-

sequencing data set with a relatively high error rate (i.e., 0.04 geno-

typing error or 0.2 allelic dropout) or missing data (i.e., 0.4) can still

remain more powerful than a microsatellite data set without any

error and without missing data (Figure 1). The choice of relatedness

estimator overcame issues with genotyping error or allelic dropout,

and individuals simulated with missing data still had thousands of

SNPs to provide the high resolution needed for relatedness analyses.

The greater power of genome-wide SNP data, as already attested to

in the literature (Hellmann et al., 2016; Santure et al., 2010; Sun

et al., 2016), was also confirmed by the contrast in the empirical

relatedness distribution of the data sets (Figure 2). Most dyads in

the empirical SNP data were unrelated, with instead hundreds of

false positives in the microsatellite data. The SNP data identified

three first-degree relatives, four likely second-degree relatives, and

other second-degree or higher degree relatives with lower related-

ness values. None of the seven highly related dyads consisted of

individuals sampled in the same pod (data not shown), suggesting

that kinship may not be of importance for associations in groups of

blue whales. This is in agreement with other, limited knowledge that

indicates associations in baleen whales tend to be short term and

unstable, with no to very little evidence of an influence of kinship

(e.g., Valsecchi, Hale, Corkeron, & Amos, 2002; Weinrich, Rosen-

baum, Baker, Blackmer, & Whitehead, 2006).

We have only touched here on the potential of genome-wide

SNPs for estimating relatedness in nonmodel organisms. Relatedness

estimates and associated simulations could also take into account

the likelihood of genotype calls with the aim of minimizing the

downward bias in estimates caused by genotyping errors. The pro-

gram LCMLKIN (Lipatov, Sanjeev, Patro, & Veeramah, 2015) can

already take likelihood information into account. This is currently

limited as, to our knowledge, LCMLKIN, and no other SNP-specific

program that can estimate relatedness (e.g., Danecek et al., 2011;

Zheng et al., 2012) has yet a simulation component to assess reliabil-

ity. In addition, the popular bioinformatics pipeline STACKS does not

output likelihoods or a similar index for all three possible genotypes

at each locus in each individual (the latest version we checked was

1.44), which is required by lcMLkin. Another promising potential of

genome-wide SNP data is for identifying individuals who are equally

related to each other according to a pedigree relationship, but share

by descent a different proportion of the genome due to the proba-

bilities associated with Mendelian inheritance (Hill & Weir, 2011). If

the marker set is powerful enough, as seen here (Figure 1), estimates

of relatedness in full-siblings should have higher variance than par-

ent–offspring relationships because the latter always has an IBD of

one allele per locus. As the number of loci and therefore linkage

continues to increase, and if a linkage map is known, information

about SNPs in linkage disequilibrium could also be used to provide

further power for estimating relatedness (Albrechtsen et al., 2009).

These advances could be especially important in refining captive

breeding programmes for conservation when they already consist of

highly related individuals (Attard, Brauer, et al., 2016; Attard, M€oller,

et al., 2016). Pedigree-based ideas of relatedness in conservation

breeding could also be replaced with measures of genome similarity

(Ivy et al., 2016), such as used in agricultural breeding (Speed &

Balding, 2015). This is because the allele frequencies of the original

wild population are often poorly known, and so it is difficult to accu-

rately estimate pedigree-based relatedness (Ivy et al. (2016), but see

Svengren, Prettejohn, Bunge, Fundi, and Bj€orklund (2017)).

We showed here how simulations can be used to improve relat-

edness inferences from genotyping-by-sequencing data. The related-

ness estimator of Ritland (1996) was found to perform best when

considering the relatively high error rate of such data, with similar

simulation assessments required for other genotyping-by-sequencing

data sets to confirm whether this is the case across data sets. A rig-

orous, technical comparison of estimators would be required to

ascertain the reason for any differences in performance. Relatedness

estimates from genotyping-by-sequencing data will allow higher-

resolution assessments of breeding behaviour, social structure,

inbreeding and inbreeding depression, and population demographics

and connectivity than previously possible, and will only improve as

relatedness estimators are developed that are specific to this type of

data set.
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